Mathematics 420 / 507 Real Analysis / Measure Theory
Final Exam Wednesday 14 December 2005, 8:30 am (2 hours 30 minutes)

All 5 questions carry equal credit. No calculators, books or notes allowed.
(1) (a) For a measure space (X, \mathcal{M}, μ) and $p \in[1, \infty)$ define: (i) $\|f\|_{p}$; (ii) L^{p}; (iii) convergence in L^{p}.
(b) State the Hölder and Minkowski inequalities. (You do not need to say when equality holds).
(c) Let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Show that if $f, f_{1}, f_{2}, \ldots \in L^{p}$ satisfy $f_{n} \rightarrow f$ in L^{p} and $g, g_{1}, g_{2}, \ldots \in L^{q}$ satisfy $g_{n} \rightarrow g$ in L^{q}, then $f_{n} g_{n} \rightarrow$ $f g$ in L^{1}. (Here $f g$ denotes the pointwise product).
(d) For some $p, q \in(1, \infty)$ with $1 / p+1 / q \neq 1$ give an example to show that the implication in (c) need not hold.
(2) Let μ, ν, λ be σ-finite positive measures on (X, \mathcal{M}).
(a) Show that $\mu \ll \mu+\nu$.
(b) Show that if $\nu \ll \mu$ and $\lambda \ll \mu$ then $\nu+\lambda \ll \mu$ and

$$
\frac{d(\nu+\lambda)}{d \mu}=\frac{d \nu}{d \mu}+\frac{d \lambda}{d \mu} \quad \mu \text {-a.e. }
$$

(c) Show that if $\lambda \ll \nu \ll \mu$ then $\lambda \ll \mu$ and

$$
\frac{d \lambda}{d \mu}=\frac{d \lambda}{d \nu} \frac{d \nu}{d \mu} \quad \mu \text {-a.e. }
$$

(d) Show that if $\lambda \ll \mu$ and $\lambda \ll \nu$ then $\lambda \ll \mu+\nu$; find and prove a formula for $\frac{d \lambda}{d(\mu+\nu)}$ in terms of (only) $\frac{d \lambda}{d \mu}$ and $\frac{d \lambda}{d \nu}$, assuming that $\frac{d \lambda}{d \mu}, \frac{d \lambda}{d \nu} \in(0, \infty)$.
(3) (a) State: (i) the monotone convergence theorem; (ii) Fatou's lemma; (iii) the dominated convergence theorem.
(b) Assuming (ii), prove (iii).
(c) Evaluate $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin (x / n)}{x+x^{2}} d x$, justifying your answer.
(4) Let m denote Lebesgue measure on \mathbb{R}^{2}.
(a) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel-measurable then

$$
m\{(x, f(x)): x \in \mathbb{R}\}=0
$$

(b) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Borel-measurable then

$$
m\{(x+f(x), x-f(x)): x \in \mathbb{R}\}=0
$$

Hint: apply a transformation of \mathbb{R}^{2}.
(c) Show that if $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are increasing then

$$
m\{(f(t), g(t)): t \in \mathbb{R}\}=0
$$

Hint: consider the intersection of the set with the line $\{(x, y): x+y=a\}$.
(5) Let f, f_{1}, f_{2}, \ldots be measurable real functions on (X, \mathcal{M}, μ). For $A \subset X$, recall that " $f_{n} \rightarrow f$ uniformly on A " means that for every $\epsilon>0$ there exists N such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { for all } n \geq N \text { and } x \in A \text {. }
$$

We say that " $f_{n} \rightarrow f$ almost uniformly" if for every $\delta>0$ there exists $A \in \mathcal{M}$ with $\mu\left(A^{C}\right)<\delta$ such that $f_{n} \rightarrow f$ uniformly on A.
(a) Show that if $f_{n} \rightarrow f$ almost uniformly then $f_{n} \rightarrow f$ almost everywhere.
(b) Suppose $\mu(X)<\infty$. Show that if $f_{n} \rightarrow f$ almost everywhere then $f_{n} \rightarrow f$ almost uniformly.
(Hints: Let $E(\epsilon, N)$ be the set of x such that $\left|f_{n}(x)-f(x)\right|>\epsilon$ for some $n \geq N$. Show that $\lim _{N \rightarrow \infty} \mu(E(\epsilon, N))=0$. Then choose N_{k} such that $\mu\left(E\left(1 / k, N_{k}\right)\right) \leq \delta 2^{-k}$.)
(c) Give an example to show that if $\mu(X)=\infty$ then the implication in (b) need not hold.

