Mathematics 420 / 507Real Analysis / Measure TheoryFinal ExamWednesday 14 December 2005, 8:30 am (2 hours 30 minutes)

All 5 questions carry equal credit. No calculators, books or notes allowed.

(1) (a) For a measure space (X, \mathcal{M}, μ) and $p \in [1, \infty)$ define: (i) $||f||_p$; (ii) L^p ; (iii) convergence in L^p .

(b) State the Hölder and Minkowski inequalities. (You do not need to say when equality holds).

(c) Let $p, q \in (1, \infty)$ satisfy 1/p + 1/q = 1. Show that if $f, f_1, f_2, \ldots \in L^p$ satisfy $f_n \to f$ in L^p and $g, g_1, g_2, \ldots \in L^q$ satisfy $g_n \to g$ in L^q , then $f_n g_n \to fg$ in L^1 . (Here fg denotes the pointwise product).

(d) For some $p, q \in (1, \infty)$ with $1/p + 1/q \neq 1$ give an example to show that the implication in (c) need not hold.

- (2) Let μ, ν, λ be σ -finite *positive* measures on (X, \mathcal{M}) .
 - (a) Show that $\mu \ll \mu + \nu$.
 - (b) Show that if $\nu \ll \mu$ and $\lambda \ll \mu$ then $\nu + \lambda \ll \mu$ and

$$\frac{d(\nu+\lambda)}{d\mu} = \frac{d\nu}{d\mu} + \frac{d\lambda}{d\mu} \quad \mu\text{-a.e.}$$

(c) Show that if $\lambda \ll \nu \ll \mu$ then $\lambda \ll \mu$ and

$$\frac{d\lambda}{d\mu} = \frac{d\lambda}{d\nu} \frac{d\nu}{d\mu}$$
 μ -a.e.

- (d) Show that if $\lambda \ll \mu$ and $\lambda \ll \nu$ then $\lambda \ll \mu + \nu$; find and prove a formula for $\frac{d\lambda}{d(\mu + \nu)}$ in terms of (only) $\frac{d\lambda}{d\mu}$ and $\frac{d\lambda}{d\nu}$, assuming that $\frac{d\lambda}{d\mu}, \frac{d\lambda}{d\nu} \in (0, \infty)$.
- (3) (a) State: (i) the monotone convergence theorem; (ii) Fatou's lemma; (iii) the dominated convergence theorem.

(b) Assuming (ii), prove (iii).
(c) Evaluate
$$\lim_{n\to\infty} \int_0^\infty \frac{\sin(x/n)}{x+x^2} dx$$
, justifying your answer

(4) Let *m* denote Lebesgue measure on \mathbb{R}^2 .

(a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is Borel-measurable then

$$m\{(x, f(x)) : x \in \mathbb{R}\} = 0.$$

(b) Show that if $f : \mathbb{R} \to \mathbb{R}$ is Borel-measurable then

$$m\{(x + f(x), x - f(x)) : x \in \mathbb{R}\} = 0.$$

Hint: apply a transformation of \mathbb{R}^2 .

(c) Show that if $f, g : \mathbb{R} \to \mathbb{R}$ are *increasing* then

$$m\{(f(t), g(t)) : t \in \mathbb{R}\} = 0.$$

Hint: consider the intersection of the set with the line $\{(x, y) : x + y = a\}$.

(5) Let f, f_1, f_2, \ldots be measurable real functions on (X, \mathcal{M}, μ) . For $A \subset X$, recall that " $f_n \to f$ uniformly on A" means that for every $\epsilon > 0$ there exists N such that

 $|f_n(x) - f(x)| < \epsilon$ for all $n \ge N$ and $x \in A$.

We say that " $f_n \to f$ almost uniformly" if for every $\delta > 0$ there exists $A \in \mathcal{M}$ with $\mu(A^C) < \delta$ such that $f_n \to f$ uniformly on A.

(a) Show that if $f_n \to f$ almost uniformly then $f_n \to f$ almost everywhere.

(b) Suppose $\mu(X) < \infty$. Show that if $f_n \to f$ almost everywhere then $f_n \to f$ almost uniformly.

(Hints: Let $E(\epsilon, N)$ be the set of x such that $|f_n(x) - f(x)| > \epsilon$ for some $n \ge N$. Show that $\lim_{N\to\infty} \mu(E(\epsilon, N)) = 0$. Then choose N_k such that $\mu(E(1/k, N_k)) \le \delta 2^{-k}$.)

(c) Give an example to show that if $\mu(X) = \infty$ then the implication in (b) need not hold.