Math 419 Final Exam April 2012

Section: 201 Instructor: Ed Perkins Duration: 2.5 hours .

Instructions:

- Write your name and student ID on the front page.
- This examination contains five questions worth a total of 104 points.
- Write each answer **very clearly** below the corresponding question (Use back of page if needed).
- No calculators, books, notebooks or any other written materials are allowed.
- Good luck!

1. (22 points) Consider the Markov Chain with state space $\{1, 2, 3, 4\}$ and transition matrix

$$P = \begin{pmatrix} .5 & .2 & .25 & .05 \\ 0 & .5 & .5 & 0 \\ 0 & 0 & .25 & .75 \\ 0 & 0 & .25 & .75 \end{pmatrix}.$$

- (a) Find the communicating classes and classify each as transient, positive recurrent or null recurrent. You need not justify your answer.
- (b) Find the period of each state. Justify your answers.
- (c) Show the restriction of P to the state space $\{3,4\}$ describes an irreducible aperiodic Markov Chain. Find its stationary distribution π .
- (d) Find $\lim_{n\to\infty} P^n$.
- 2. (15 points) (a) State carefully: the Martingale Convergence Theorem.
 - (b) Define carefully
 - i. A uniformly integrable collection of random variables $\{X_i : i \in I\}$.
 - ii. The previsible square function $(\langle M \rangle_n : n \in \mathbb{Z}_+)$ of an (\mathcal{F}_n) -martingale $(M_n : n \in \mathbb{Z}_+)$.
 - (c) True or False. If True, give a proof; if False, provide a counter-example. If $(M_n: n \in \mathbb{Z}_+)$ is a non-negative martingale satisfying $M_0 = 0$ and $E(\langle M \rangle_{\infty}) < \infty$, then M_n converges a.s. and in L^1 to an integrable limit. Here $\langle M \rangle_{\infty} = \lim_{n \to \infty} \langle M \rangle_n$.
- 3. (15 points) Let \mathcal{G} be a sub- σ -field of \mathcal{F} .
 - (a) Define carefully: The conditional expectation $E(X|\mathcal{G})$ of an integrable random variable X on a probability space (Ω, \mathcal{F}, P) given \mathcal{G} .
 - (b) Assume X is a non-negative r.v. which is not integrable.
 - (i) Prove that $E(X \wedge n|\mathcal{G})$ converges a.s. to a limit r.v. taking values in $[0, \infty]$.
 - (ii) Define $E(X|\mathcal{G}) = \limsup_{n\to\infty} E(X \wedge n|\mathcal{G})$. Show that $E(X|\mathcal{G})$ satisfies the same defining properties (in (a) above) as the conditional expectation of an integrable r.v. X.
 - (iii) Give an example of an X and \mathcal{G} as above where $E(X|\mathcal{G}) < \infty$ a.s. but $E(X) = \infty$.

- 4. (30 points) (a) Assume $\{Z_n : n \in \mathbb{N}\}$ are non-negative iid random variables with mean one, $\mathcal{F}_n = \sigma(Z_1, \ldots, Z_n)$, and set $M_n = \prod_{i=1}^n Z_i$ (so $M_0 = 1$). Show that M_n is an (\mathcal{F}_n) -martingale and converges a.s. as $n \to \infty$.
 - (b) Assume $\{X_n\}$ are iid random variables such that $P(X_n = 1) = P(X_n = -1) = \frac{1}{2}$ and set $S_n = \sum_{i=1}^n X_i$, $\mathcal{F}_n = \sigma(S_1, \dots, S_n)$, and $T = \min\{n \geq 0 : S_n = 1\}$, where $\min \emptyset = \infty$.
 - (i) Show, using the definition of stopping time, that T is an (\mathcal{F}_n) -stopping time.
 - (ii) Show that $T < \infty$ a.s. (Hint: This is easy if you think of Markov Chain theory).
 - (iii) If $\theta \geq 0$ and $\cosh \theta = (e^{\theta} + e^{-\theta})/2$, show that $M_n = \frac{e^{\theta S_n}}{(\cosh \theta)^n}$ is an (\mathcal{F}_n) -martingale.
 - (iv) Show that $E(M_{T \wedge n}) = 1$ for all n. Now show that $E(M_T) = 1$.
 - (v) Use the above to prove that $E(x^T) = x^{-1}[1 \sqrt{1 x^2}]$ for $0 \le x \le 1$.
 - (vi) Prove that $E(T) = \infty$. Justify this conclusion carefully.
- 5. (22 points) Let B be a standard Brownian motion and define $M_t = \sup_{0 \le s \le t} B_s$. NOTE: DO NOT USE THE LAW OF THE ITERATED LOGARITHM IN THIS QUESTION-UNLESS YOU GIVE A COMPLETE PROOF WHICH IS NOT RECOMMENDED.
 - (a) What is the cumulative distribution function of M_t (you need not justify your answer because this is a restatement of the Reflection Principle)?
 - (b) State the Borel-Cantelli Lemma.
 - (c) Let 0 . Prove that

$$\limsup_{n \to \infty} \frac{M_{1/n}}{n^{-p}} = 0 \quad a.s.$$

(d) Prove that for p as above,

$$\limsup_{t \downarrow 0} \frac{|B_t|}{t^p} = 0 \ a.s.$$

(e) Prove that for $p > \frac{1}{2}$,

$$\limsup_{t\downarrow 0} \frac{|B_t|}{t^p} = \infty \ a.s.$$

Hint: One approach is to modify the proof of nowhere differentiability of the Brownian path.