Be sure that this examination has 2 pages.

The University of British Columbia

Sessional Examinations - April 2006

Mathematics 419

Stochastic Processes

Closed book examination

Time: $2\frac{1}{2}$ hours

Special Instructions: No calculators, books or notes are allowed. **R** is the set of real numbers, **Z** is the set of integers and $\mathbf{Z}_{+} = \{0, 1, 2, \ldots\}$.

Marks

- [10] **1.** State carefully:
 - (a) The Strong Law of Large Numbers.
 - (b) The Kolmogorov Zero-one Law.
- [5] **2.** Give an example of a martingale $\{M_n\}$ which converges a.s. as $n \to \infty$ but does not converge in L^1 . Briefly justify your example.
- [10] **3.** True or False. If True, give a proof; if False, give a counter-example.
 - (a) If T is an (\mathcal{F}_n) -stopping time, then so is 2T.
 - (b) If $X_n \stackrel{L^p}{\to} X$ for some p > 1, then $X_n \stackrel{L^1}{\to} X$.
- [15] **4.** Let $X = \{X_n : n \in \mathbf{Z}_+\}$ be a Galton-Watson branching process with offspring distribution $P(N = n) = p_n, \ n = 0, 1, 2, \ldots$ satisfying $p_1 < 1$ and $E(N^2) < \infty$. Recall that X is a \mathbf{Z}_+ -valued Markov chain.
 - (a) Classify each state in \mathbf{Z}_+ as transient, null recurrent or positive recurrent. Justify your answers.
 - (b) If $p_n = p^n(1-p)$ for n = 0, 1, ..., for some $0 , and <math>X_0 = 1$, find P(X becomes extinct).
- [8] 5. Show that any L^2 -bounded (\mathcal{F}_n) -martingale, M_n , may be written as the difference of two non-negative L^2 -bounded (\mathcal{F}_n) -martingales.
- [5] **6.** Assume $X = \{X_t : t \ge 0\}$ is a Lévy process such that X_t is integrable and has mean 0. Prove X is a martingale.

- [8] 7. Let X_1 , X_2 be independent identically distributed r.v.'s, each taking on the values 0 and 1 with probability 1/2. Let $Y = X_1 X_2$.
 - (a) Find $E(X_1|Y)$.
 - (b) Show that in general $E(X_1X_2|\mathcal{G})$ may not be a.s. equal to $E(X_1|\mathcal{G})E(X_2|\mathcal{G})$ for a sub- σ -field \mathcal{G} .
- [14] 8. (a) State the Borel-Cantelli Lemma.
 - (b) Assume $\{X_n : n \geq 1\}$ are i.i.d. Cauchy r.v.'s. Recall that a Cauchy r.v. has density $f(x) = \frac{1}{\pi(1+x^2)}$, $x \in \mathbf{R}$. Prove that $\limsup_{n \to \infty} \frac{\log |X_n|}{\log n} = 1$ a.s.
- [11] **9.** Consider a connected, locally finite graph with vertex set S countably infinite. By connected we mean that for any $i, j \in S$ there is a finite set of edges $i = i_0, i_1, i_2, \ldots, i_n = j$, such that there is an edge from i_k to i_{k+1} for $k = 0, \ldots, n-1$. Locally finite means for each vertex i, the number of vertices connected to i by a single edge is finite. Assume also no vertex is connected to itself. Let $X = \{X_n : n \in \mathbf{Z}_+\}$ be a simple random walk on the graph.
 - (a) Find a stationary measure for X. Justify your answer.
 - (b) Prove that either all states are transient, or all states are null recurrent.
 - (c) Give examples of each possibility in (b). You need not justify your examples.
- [22] **10.** Let $\{X_n : n \in \mathbf{Z}_+\}$ be an aperiodic irreducible Markov chain with finite state space S. [Remember to use any results from the course in this question.]
 - (a) Show there is a natural number n_0 such that $\min_{i,k\in S} p_{i,k}(n_0) = \rho > 0$.
 - (b) If $T_k = \min\{n \geq 1 : X_n = k\}$, prove that for all $i, k \in S$, and all natural numbers $n, P_i(T_k > n_0 n) \leq (1 \rho)^n$.
 - (c) Prove that X has a stationary distribution π .
 - (d) Prove that there is a $\lambda > 0$ and c > 0 so that for all $i \in S$, and all natural numbers n,

$$\sum_{j \in S} |\pi_j - P_i(X_n = j)| \le ce^{-\lambda n}.$$

[108] Total Marks