THE UNIVERSITY OF BRITISH COLUMBIA

Sessional Examinations April 2005 Mathematics 414

Time: $2\frac{1}{2}$ hours

Please do 5 questions. Solutions should be very full, and aimed at as low a grade level as possible. Calculators are not to be used. Answers can be left in "calculator-ready" form.

- 1. (a) In how many ways can 101 identical muffins be distributed between A, B, and C? Do not assume that everyone gets at least one muffin.
- (b) What about between A, B, C, and D?
- **2.** The vertices of a square, taken counterclockwise, are A(11,0), B(s,t), $C(0,\pi)$, and D. Find (s,t).
- 3. Find efficiently the product of all the positive integers that divide 1600.
- **4.** Given that a is positive and $a^2 + \frac{1}{a^2} = 3$, find $a^3 + \frac{1}{a^3}$ and $a^3 \frac{1}{a^3}$ efficiently. Give as simple answers as possible.
- 5. Describe in detail how to cut up an equilateral triangle into (a) 7 equilateral triangles; (b) 8 equilateral triangles; (c) 1001 equilateral triangles.
- **6.** Sketch, with detailed justification, the part of the xy-plane that satisfies the inequality $|y-x|+|y-2x|\leq 6$, and find its area.

Note that for any positive k, the region |y-x|+|y-2x|=6k is a scaled version of the region |y-x|+|y-2x|=6. (I should have pointed out this way of dealing with the inequalities in the solutions of the similar workshop problems.)

7. How many sequences a_0 , a_1 , a_2 , a_3 , a_4 , a_5 of six non-negative integers are there such that (i) $a_{i+2} = 2a_{i+1} + a_i$ for all $i \le 3$ and (ii) $a_5 = 1000$?