The University of British Columbia

Final Examinations—December 2007

Mathematics 402

Calculus of Variations (Professor Loewen)

Duration:	150 minutes.
Permitted:	Any handwritten or instructor-generated materials.
Forbidden:	All electronic devices.
Presentation:	Write your answers on the coloured sheets provided.
	Start each question on a new sheet.

[20] **1.** Let $L(t, x, v) = (1 - t^2)v^2 + \lambda x^2$.

- (a) Find all constants λ, k, c , that make $x(t) = t^2 + kt + c$ an extremal for L.
- (b) Find another value of λ for which L has a nonconstant polynomial extremal. (Find the extremal, too.)
- (c) Take λ , k, c, and $x(\cdot)$ from part (a). For each fixed b > 0, decide whether the extremal x itself provides the optimal path from (0, x(0)) to (b, x(b)). Address all possible types of local minimality: directional, weak, and strong. (Expect different answers for different values of b.) *Hint*: the arc y sketched below is an extremal for L obeying y(0) = 0, $\dot{y}(0) = 1$.

[20] 2. (a) Solve the following problem. Note that x(2) may take any real value.

$$\min_{x \in PWS[1,2]} \left\{ 4x(2)^2 + \int_1^2 \left(t^2 \dot{x}(t)^2 + 2x(t)^2 \right) dt : x(1) = 1 \right\}.$$

(b) Among all arcs x in PWS[1, 2] obeying both

$$x(1) = 1$$
 and $24x(2)^2 + \int_1^2 12x(t)^2 dt = 5$,

identify the one that minimizes $M[x] \stackrel{\text{def}}{=} \int_{1}^{2} t^{2} \dot{x}(t)^{2} dt.$

Hint: The result from part (a) should help with part (b).

[20] 3. Consider the following minimization problem, in which α is a constant:

$$\min_{x \in PWS[0,1]} \left\{ \Lambda[x] := \int_0^1 \left(\sqrt{1 + \dot{x}(t)^2} + \alpha x(t) \right) \, dt \, : \, x(0) = 1, \, \, x(1) = 1 \right\}.$$

- (a) Explain why any local minimizer must be C^2 .
- (b) Prove: If $\alpha > 0$ and $x(\cdot)$ is an extremal, then $x(\cdot)$ must be a convex function. What happens when $\alpha < 0$? When $\alpha = 0$?
- (c) When $\alpha = 2007$, the problem has no minimum. Prove this by constructing a sequence of admissible arcs x_1, x_2, \ldots , such that $\Lambda[x_n] \to -\infty$ as $n \to \infty$.
- (d) Find the unique global solution in two cases:

(i)
$$\alpha = 2/\sqrt{5}$$
, (ii) $\alpha = -2/\sqrt{5}$.

Suggestion: Work algebraically with general α as much as possible. That way every step can help you twice.

- [20] 4. Let $L(t, x, v) = v^2 + 4xv + \alpha x^2 + 2tx$, (a, A) = (0, 0), and (b, B) = (1, 1) in the basic problem.
 - (a) Find all real values of the parameter α for which an admissible extremal exists.
 - (b) For every such extremal, classify it as either Extremal, Weak Local Minimizer, Strong Local Minimizer, or Global Minimizer. (Make the strongest statement you can justify.)

[20] 5. In a "point-to-curve" problem for L = L(t, x, v), the initial point (a, A) is given but the final point is free to vary along some curve C in (t, x)-space. When Cis given parametrically, i.e.,

$$C = \{(b, B) = (b(\theta), B(\theta)) : 0 < \theta < 1\},\$$

the problem becomes

$$\min_{\theta, x(\cdot)} \left\{ \int_{a}^{b(\theta)} L(t, x(t), \dot{x}(t)) dt : x(a) = A, \ x \in PWS[a, b(\theta)], \ x(b(\theta)) = B(\theta) \right\}.$$
 (P)

Recall the value function defined below; assume it is continuously differentiable:

$$V(T,X) = \min_{x(\cdot)} \left\{ \int_{a}^{T} L(t,x(t),\dot{x}(t)) dt : x(a) = A, \ x \in PWS[a,T], \ x(T) = X \right\}.$$

(a) Suppose the parameter $\theta = \hat{\theta}$ and arc \hat{x} give the minimum in problem (P). Write $\hat{b} = b(\hat{\theta}), \hat{B} = B(\hat{\theta}), \hat{L}(t) = L(t, \hat{x}(t), \dot{\hat{x}}(t))$, etc. Explain why these two vectors in (t, x)-space must be perpendicular:

$$\left(V_t(\widehat{b},\widehat{B}),V_x(\widehat{b},\widehat{B})\right), \quad \left(b'(\widehat{\theta}), B'(\widehat{\theta})\right).$$

(b) In the situation of part (a), explain why these two vectors in (t, x)-space must be perpendicular:

$$\left(\widehat{L}(\widehat{b}) - \widehat{L}_v(\widehat{b})\dot{\widehat{x}}(\widehat{b}), \,\widehat{L}_v(\widehat{b})\right), \quad \left(b'(\widehat{\theta}), \, B'(\widehat{\theta})\right).$$

(c) Suppose $L(t, x, v) = f(t, x)\sqrt{1 + v^2}$ for some positive-valued f = f(t, x). Explain why the minimizing arc \hat{x} must cross the target curve C at right angles.

¹Assume sufficient differentiability and $(b'(\theta), B'(\theta)) \neq (0, 0)$ for all θ .