This examination has 5 questions on 2 pages.

The University of British Columbia

Final Examinations-December 2005
Mathematics 402
Calculus of Variations (Professor Loewen)
Open book examination.
Time: $2 \frac{1}{2}$ hours
Any written materials are allowed. No electronic devices.
[20] 1. Use $L(t, x, v)=\sqrt{x\left(1+v^{2}\right)}$ to solve parts (a)-(c) below:
(a) Find all extremals $x(\cdot)$ of L that obey $x(0)=1$ and $x(2)=5$.
(b) Each extremal in part (a), together with the interval [0, 2], satisfies the first-order necessary conditions for optimality in a point-to-curve problem of this form:

$$
\min _{\substack{b>0 \\ x \in P W S[0, b]}}\left\{\int_{0}^{b} \sqrt{x(t)\left(1+\dot{x}(t)^{2}\right)} d t: x(0)=1, x(b)=5+m(b-2)\right\} .
$$

Find the slope m (a constant) corresponding to each extremal.
(c) For each extremal in item (b), use second-order tests to support the strongest conclusions you can justify concerning optimality or non-optimality.
[20] 2. Choose $b>0$ and $x:[0, b] \rightarrow \mathbb{R}$ to minimize

$$
\Lambda[x ; b]=\int_{0}^{b} x(t)^{2} \dot{x}(t)^{2} d t
$$

subject to the endpoint restrictions $x(0)=1$ and $x(b)=\sqrt{4+b^{2}}$.
[20] 3. Consider this isoperimetric problem on a fixed interval, assuming $\gamma>0$:

$$
\min _{x}\left\{\int_{0}^{2} \sqrt{1+\dot{x}(t)^{2}} d t: x(0)=0=x(2), \int_{0}^{2} x(t) d t=\gamma\right\}
$$

(a) Prove: If a minimizing arc exists, its graph must be an arc of an ellipse in the (t, x)-plane.
(b) Prove: When $\gamma=\frac{\pi}{2}-1$, a minimizing arc does exist, and indeed its graph is an arc of a circle in the (t, x)-plane.
[Clue: Proving a given statement is often easier than deriving it.]

This examination has 5 questions on 2 pages.

[20] 4. Find the global minimizer, \widehat{x}, in the problem below. Show that \widehat{x} is C^{1} but not C^{2}.

$$
\min \left\{\int_{-2}^{2}\left(\dot{x}(t)^{4}+3 x(t)^{2}\right) d t: x(-2)=-1, x(2)=1\right\}
$$

Clues: Symmetry suggests that \widehat{x} should be an odd function. Every odd function in C^{1} has predictable behaviour at the origin, and this will help exploit WE2. Proving global optimality is part of the challenge here.
[20] 5. Use these definitions in parts (a)-(c) below:

$$
\begin{aligned}
& L(t, x, v)=\frac{v^{2}}{2}-\frac{x^{2}}{t(1-t)} \\
& V(T, X) \stackrel{\text { def }}{=} \min _{x \in P W S[0, T]}\left\{\int_{0}^{T} L(t, x(t), \dot{x}(t)) d t: x(0)=0, x(T)=X\right\}
\end{aligned}
$$

(a) Prove: On any subinterval $[a, b]$ of $(0,1)$, each $\operatorname{arc} x(t ; \alpha)=\alpha t(1-t), \alpha \in \mathbb{R}$, is optimal relative to its endpoints for L. [Prove strong local minimality.]
(b) Use the information in (a) to make a "guess" at the minimum value $V(T, X)$ defined above. Call your guess $W(T, X)$.
(c) Find the Hamiltonian H corresponding to L, and write the Hamilton-Jacobi PDE for an unknown function $W=W(t, x)$.
(d) Evaluate $V(T, X)$ for $0<T<1$ and $X \in \mathbb{R}$. (Clue: prove that the "guess" in (b) is correct.)
(e) Prove that for every piecewise smooth $x:[0,1] \rightarrow \mathbb{R}$ with $x(0)=0=x(1)$,

$$
\int_{0}^{1}\left[\frac{\dot{x}(t)^{2}}{2}-\frac{x(t)^{2}}{t(1-t)}\right] d t \geq 0
$$

