This examination has 5 questions on 2 pages.

The University of British Columbia Final Examinations—December 2005

Mathematics 402

Calculus of Variations (Professor Loewen)

Open book examination.

Time: $2\frac{1}{2}$ hours

Any written materials are allowed. No electronic devices.

[20] **1.** Use $L(t, x, v) = \sqrt{x(1+v^2)}$ to solve parts (a)–(c) below:

- (a) Find all extremals $x(\cdot)$ of L that obey x(0) = 1 and x(2) = 5.
- (b) Each extremal in part (a), together with the interval [0, 2], satisfies the first-order necessary conditions for optimality in a point-to-curve problem of this form:

$$\min_{\substack{b>0,\\x\in PWS[0,b]}} \left\{ \int_0^b \sqrt{x(t)\left(1+\dot{x}(t)^2\right)} \, dt \, : \, x(0) = 1, \, x(b) = 5 + m(b-2) \right\}.$$

Find the slope m (a constant) corresponding to each extremal.

- (c) For each extremal in item (b), use second-order tests to support the strongest conclusions you can justify concerning optimality or non-optimality.
- [20] **2.** Choose b > 0 and $x: [0, b] \to \mathbb{R}$ to minimize

$$\Lambda[x;b] = \int_0^b x(t)^2 \dot{x}(t)^2 dt$$

subject to the endpoint restrictions x(0) = 1 and $x(b) = \sqrt{4 + b^2}$.

[20] **3.** Consider this isoperimetric problem on a fixed interval, assuming $\gamma > 0$:

$$\min_{x} \left\{ \int_{0}^{2} \sqrt{1 + \dot{x}(t)^{2}} dt : x(0) = 0 = x(2), \int_{0}^{2} x(t) dt = \gamma \right\}$$

- (a) Prove: If a minimizing arc exists, its graph must be an arc of an ellipse in the (t, x)-plane.
- (b) Prove: When $\gamma = \frac{\pi}{2} 1$, a minimizing arc does exist, and indeed its graph is an arc of a circle in the (t, x)-plane.

[Clue: *Proving* a given statement is often easier than *deriving* it.]

This examination has 5 questions on 2 pages.

[20] 4. Find the global minimizer, \hat{x} , in the problem below. Show that \hat{x} is C^1 but not C^2 .

$$\min\left\{\int_{-2}^{2} \left(\dot{x}(t)^{4} + 3x(t)^{2}\right) dt : x(-2) = -1, \ x(2) = 1\right\}.$$

Clues: Symmetry suggests that \hat{x} should be an odd function. Every odd function in C^1 has predictable behaviour at the origin, and this will help exploit WE2. Proving global optimality is part of the challenge here.

[20] 5. Use these definitions in parts (a)–(c) below:

$$\begin{split} L(t,x,v) &= \frac{v^2}{2} - \frac{x^2}{t(1-t)}, \\ V(T,X) \stackrel{\text{def}}{=} \min_{x \in PWS[0,T]} \left\{ \int_0^T L(t,x(t),\dot{x}(t)) \, dt \, : \, x(0) = 0, \, \, x(T) = X \right\}. \end{split}$$

- (a) Prove: On any subinterval [a, b] of (0, 1), each arc $x(t; \alpha) = \alpha t(1 t), \alpha \in \mathbb{R}$, is optimal relative to its endpoints for L. [Prove strong local minimality.]
- (b) Use the information in (a) to make a "guess" at the minimum value V(T, X) defined above. Call your guess W(T, X).
- (c) Find the Hamiltonian H corresponding to L, and write the Hamilton-Jacobi PDE for an unknown function W = W(t, x).
- (d) Evaluate V(T, X) for 0 < T < 1 and $X \in \mathbb{R}$. (Clue: prove that the "guess" in (b) is correct.)
- (e) Prove that for every piecewise smooth $x: [0,1] \to \mathbb{R}$ with x(0) = 0 = x(1),

$$\int_0^1 \left[\frac{\dot{x}(t)^2}{2} - \frac{x(t)^2}{t(1-t)} \right] \, dt \ge 0.$$