MATH 401 FINAL EXAM – April 18, 2011 No notes or calculators allowed. Time: 2.5 hours. Total: 50 pts.

1. Consider the ODE problem for u(x):

$$\begin{cases} Lu := (p(x)u')' + q(x)u = f(x), & 1 < x < 2\\ u(1) = 2, & u(2) = 5 \end{cases}$$
(1)

(p(x), q(x), and f(x) are given functions).

- (a) (2 pts.) Write down the problem satisfied by the Green's function $G_x(y) = G(x; y)$ for problem (1).
- (b) (2 pts.) Express the solution u(x) of (1) in terms of the Green's function $G_x(y)$.
- (c) (3 pts.) If $p(x) = 1/x^2$ and $q(x) = 2/x^4$, find the Green's function G(x; y) for (1).
- (d) (3 pts.) Again with $p(x) = 1/x^2$ and $q(x) = 2/x^4$, find the solvability condition on f(x) for (1) if the boundary conditions are changed to u'(1) = 2, u(2) = 5.

- 2. The free-space Green's function for Δ in the plane \mathbb{R}^2 is $G_x^{\mathbb{R}^2}(y) = A \ln |y x|$.
 - (a) (3 pts.) Derive the value of the constant A.
 - (b) (5 pts.) Use the method of images to find the Green's function for the following boundary-value problem for Laplace's equation in the quarter-plane,

$$\begin{cases} \Delta u = 0, \quad x_1 > 0, \quad x_2 > 0\\ u(0, x_2) = 0, \quad u(x_1, 0) = g(x_1) \end{cases},$$
(2)

and find the solution $u(x_1, x_2)$.

(c) (2 pts.) Prove that problem (2) cannot have more than one solution u(x) which decays at infinity (i.e. $\lim_{|x|\to\infty} u(x) = 0$).

- 3. Let *D* be a bounded domain in \mathbb{R}^n , and let $\{\phi_j(x)\}_{j=1}^{\infty}$ be a complete, orthonormal set of eigenfunctions for $-\Delta$ on *D* with zero (Dirichlet) BCs: $-\Delta\phi_j(x) = \lambda_j\phi_j(x)$, $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots$.
 - (a) (4 pts.) Write down the problem satisfied by the Green's function $G(y, \tau; x, t)$ for the following problem for a heat-type equation

$$\begin{cases} u_t = \Delta u + u & x \in D, \ t > 0\\ u(x,0) = u_0(x) & x \in D\\ u(x,t) \equiv 0 & x \in \partial D \end{cases}$$

,

and express the solution u(x,t) in terms of the Greens function.

- (b) (4 pts.) Find the Green's function as an eigenfunction expansion.
- (c) (2 pts.) Under what condition will typical solutions grow with time?

4. Consider the variational problem

$$\min_{u \in C^4([0,1])} \int_0^1 \left\{ \frac{1}{2} (u''(x))^2 + \frac{1}{2} (u(x))^2 - e^x u(x) \right\} dx.$$

- (a) (5 pts.) Determine the problem (Euler-Lagrange equation plus BCs) that a minimizer u(x) solves.
- (b) (5 pts.) Find an approximate minimizer, using a Rayleigh-Ritz approach, with two trial functions $v_1(x) = e^x$, $v_2(x) = e^{-x}$.

5. Let D denote the **half** unit disk:

$$D = \{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 < 1, x_2 > 0 \},\$$

and let λ_1 denote the first Dirichlet (zero BCs) eigenvalue of $-\Delta$ on D.

- (a) (4 pts.) Find the best upper- and lower-bounds you can for λ_1 by comparing D with appropriate rectangles.
- (b) (3 pts.) Write the variational principle for λ_1 , and use it with trial function $v(x) = x_2(1 x_1^2 x_2^2)$ to find an upper bound for λ_1 (you may wish to compute in polar coordinates).
- (c) (3 pts.) Find the exact value of λ_1 in terms of the first positive root of the Bessel function $J_1(z)$ (which is the solution of the ODE $z^2 J''(z) + z J'(z) + (z^2 1)J(z) = 0$ which is finite at z = 0).