MATH 401 FINAL EXAM – April 23, 2010

No notes or calculators allowed. Time: 2.5 hours. Total: 100 pts.

1. Consider the problem

$$\begin{cases} u'' + u = f(x), & 0 < x < \pi/2 \\ u(0) = 0, & u(\pi/2) = 0 \end{cases}$$
(1)

- (a) (4 pts.) Write down the problem that the Green's function G(x; y) for problem (1) should solve.
- (b) (7 pts.) Find the Green's function G(x; y) for problem (1), and express the solution u(x) in terms of it.
- (c) (6 pts.) Find the solvability condition on f if the boundary conditions are changed to $u(0) + u'(\pi/2) = 0$, $u(\pi/2) = 0$.

2. Let D be a bounded (and smooth, and open) region in \mathbb{R}^n , and consider the following Poisson boundary-value problem:

$$\begin{cases} \Delta u = f(x) & \text{in } D\\ u = g(x) & \text{on } \partial D \end{cases}$$
(2)

(for given smooth functions f and g on D and ∂D respectively).

- (a) (6 pts.) Write down the problem that the Green's function G(x; y) for problem (2) should solve, and express the solution u(x) in terms of G.
- (b) (6 pts.) Derive an expression for the Green's function G(x; y) in terms of an orthonormal family of eigenfunctions $\phi_j(x)$, j = 1, 2, 3, ..., of Δ on D (with zero boundary conditions), and the corresponding eigenvalues λ_j .
- (c) (5 pts.) Suppose that $f(x) \equiv 0$, and $g(x) \ge 0$ with $g(x_0) > 0$ for some $x_0 \in \partial D$. Show that the solution u of (2) satisfies u(x) > 0 for $x \in D$. (Hint: maximum principle).

3. (17 pts.) Consider the following problem for the wave equation on the half-line with a Neumann boundary condition:

$$\begin{cases} u_{tt} = u_{xx} & x > 0, \ t > 0 \\ u_x(0,t) = 0, \ u \to 0 \text{ as } x \to +\infty \\ u(x,0) = u_0(x), \ u_t(x,0) = 0 \end{cases}$$

where $u_0(x)$ is a smooth function tending to 0 as $x \to +\infty$. Find the Green's function for this problem, and use it find the solution u(x,t). (Hint: recall the Green's function for the wave equation on the entire line is $G_{\mathbb{R}}(x,t;y,\tau) = \frac{1}{2}H(t-\tau-|y-x|)$ where H is the Heavyside step function.) 4. (a) (6 pts.) Derive (from first principles) the Euler-Lagrange equation, as well as the boundary conditions, satisfied by solutions of this variational problem:

$$\min_{u \in C^2([0,1])} \int_0^1 F(u(x), u'(x), x) dx.$$

(b) (6 pts.) Find the minimizing function for the problem

$$\min_{u(0)=0, u(1)=1} \int_0^1 \left([u'(x)]^2 + [u(x)]^2 \right) dx$$

(c) (5 pts.) Write a variational problem for functions u(x), $x \in [0, 1]$ whose Euler-Lagrange equation is $u'' = -\sin(u)$. (Don't worry about boundary conditions.) (Remark: this is the "nonlinear pendulum equation" with x as time, and u as angle of displacement.)

5. Let D be a bounded domain in \mathbb{R}^n , p(x) > 0 a smooth function on D, and consider the (Dirichlet) eigenvalue problem

$$\begin{cases} -\nabla \cdot [p(x)\nabla\phi] = \lambda\phi & \text{in } D\\ \phi = 0 & \text{on } \partial D \end{cases}$$
(3)

- (a) (3 pts.) Explain how to get an upper bound for the first eigenvalue λ_1 of problem (3) using a smooth trial function v(x) on D with v = 0 on ∂D .
- (b) Now suppose $D = D_1$ is the unit disk in \mathbb{R}^2 , $D_1 = \{ (x_1, x_2) \mid x_1^2 + x_2^2 < 1 \}$, and suppose $p(x) = 1 + |x|^2$.
 - i. (5 pts.) Find an upper bound on λ_1 using trial function $v(x) = 1 |x|^2$. (Hint: do the integrals in polar coordinates).
 - ii. (5 pts.) Find a lower bound on λ_1 by comparing D_1 with an appropriate square.
 - iii. (4 pts.) Explain how you might go about getting an upper bound for the second eigenvalue λ_2 by using two trial functions (for example, $v(x) = 1 |x|^2$ and $w(x) = 1 |x|^4$) but do not try to do any computations.

6. (15 pts.) Let D_1 be the unit disk in \mathbb{R}^2 . Use a Rayleigh-Ritz-type approach to find an approximate solution to the variational problem

$$\min_{u \in C^{2}(D_{1}), \ u(x) \equiv 1 \text{ on } \partial D_{1} \int_{D_{1}} \left(|\nabla u|^{2} + e^{u} \right) dx$$

by considering the one-parameter family of trial functions

$$u(x) = 1 + a(1 - |x|^2), \qquad a \in \mathbb{R}.$$

Reduce the problem to an algebraic equation for a, but do not try to solve this equation. (Hint: again, polar coordinates might help).