The University of British Columbia

Math 401 Final Examination - April 2009

Closed book exam. No notes or calculators allowed.
Answer all questions; time 2.5 hours.

1. [17] Consider the problem

$$
\begin{aligned}
L[u] & =u^{\prime \prime}+\lambda^{2} u=f(x), 0<x<1 \\
u^{\prime}(0) & =0 ; u^{\prime}(1)=0, \text { with } \lambda>0
\end{aligned}
$$

(a) Find the Green's Function for the problem, $G(\xi, x)$, and hence write the general solution in terms of $G(\xi, x)$ and $f(x)$.
(b) For what values of λ is there a solvability condition on $f(x)$, and state the condition.
2. [16] Consider the problem

$$
\begin{aligned}
L[u] & =u_{t}-u_{x x}=f(x, t), 0<x<\infty ; t>0 \\
u(x, 0) & =g(x) ; u_{x}(0, t)=1 ; u \rightarrow 0, x \rightarrow \infty
\end{aligned}
$$

Derive the solution for the problem using the Green's function from first principles.

Hint: the free space Green's function is:

$$
F(\xi, \tau, x, t)=\frac{H(t-\tau)}{(4 \pi(t-\tau))^{1 / 2}} \exp \left(\frac{-(\xi-x)^{2}}{4(t-\tau)}\right)
$$

where $H(t-\tau)$ is the unit step function.
3. [16] Consider the functional

$$
F[u]=\int_{0}^{1}\left\{\left(u^{\prime \prime}\right)^{2}-u g(x)\right\} d x
$$

where $g(x)$ is a given function.
Determine, from first principles, the differential equation and natural boundary conditions that $u(x)$ must satisfy to minimize the functional.
4. [16] The region D is the triangle bounded by the lines, $y= \pm x / \sqrt{3}$ and $x=3$, and

$$
\begin{align*}
u_{x x}+u_{y y}+2 & =0 \text { in } D \tag{1}\\
u & =0 \text { on boundary of } D,
\end{align*}
$$

Describe how you would find approximate solutions to (1) using Galerkin, Rayleigh-Ritz and Kantorovich methods, specifically explaining the difference between the methods. Give details and set up integrals but do not solve for constants.
5. [17] (a) Write down an expression for the Rayleigh Quotient for the general Sturm-Liouville problem:

$$
\begin{aligned}
\left(p(x) u^{\prime}\right)^{\prime}-q(x) u & =-\lambda r(x) u, \quad 1 \leq x \leq 2 \\
u(1) & =u(2)=0
\end{aligned}
$$

(b) For real α, solve

$$
x^{-3}\left(x^{5} u^{\prime}\right)^{\prime}+\alpha u=0 .
$$

(c) Give a rough numerical estimate of the lowest eigenvalue α_{1} for

$$
\begin{aligned}
x^{-3}\left(x^{5} u^{\prime}\right)^{\prime} & =-\alpha u, \quad 1 \leq x \leq 2 \\
u(1) & =u(2)=0 .
\end{aligned}
$$

You can take $\ln 2 \sim 0.7$ and $\pi^{2} \sim 10$.
(c) Obtain upper and lower bounds for the lowest eigenvalue, λ_{1}, for the eigenvalue problem:

$$
\begin{aligned}
x^{-3}\left(\left(x^{5}+1\right) u^{\prime}\right)^{\prime} & =-\lambda u, \quad 1 \leq x \leq 2 \\
u(1) & =u(2)=0
\end{aligned}
$$

by using different methods.
6. [17] (a) Find two term solutions for all three roots of

$$
x^{3}-(3+\varepsilon) x-2+\varepsilon=0,
$$

for $\varepsilon \ll 1$.
(b) For $\varepsilon \ll 1$, find a one-term composite solution for

$$
\begin{aligned}
\varepsilon y^{\prime \prime}+(1+3 x) y^{\prime} & =1, \quad 0 \leq x \leq 1 \\
y(0) & =2, y(1)=1
\end{aligned}
$$

