Be sure that this examination has three pages.

The University of British Columbia

Final Examinations – April 2007

Mathematics 345 Applied Nonlinear Dynamics and Chaos

Instructor: W. Nagata

Time: $2\frac{1}{2}$ hours

Special instructions:

A non-programmable, non-graphing calculator and one $8\frac{1}{2}'' \times 11''$ page of notes may be used. No other aids are permitted.

1. Consider the one-dimensional equation for $\phi(t)$ in the phase circle $S^1 = \mathbf{R}/(2\pi \mathbf{Z})$, given by

$$\dot{\phi} = f(\phi, r) = r \cos \phi - \sin \phi \cos \phi, \tag{1}$$

where $r \in \mathbf{R}$ is a parameter. (Some or all of the following trigonometric identities may be useful: $\sin(A+B) = \sin A \cos B + \cos A \sin B$, $\cos(A+B) = \cos A \cos B - \sin A \sin B$, $\sin A \cos A = \frac{1}{2} \sin(2A)$, $\cos^2 A = \frac{1}{2} + \frac{1}{2} \cos(2A)$, $\sin^2 A = \frac{1}{2} - \frac{1}{2} \cos(2A)$.)

- (a) Verify that $\phi^* = \pi/2 \pmod{2\pi}$ is a fixed point of (1), for all r. For all values of r, $-\infty < r < \infty$, determine the linearized stability of the fixed point ϕ^* and classify it as: hyperbolic and stable, hyperbolic and unstable, or non-hyperbolic.
- (b) Show that a pitchfork bifurcation occurs at $\phi^* = \pi/2 \pmod{2\pi}$, $r_c = 1$. Find the normal form of this bifurcation.
- (c) Sketch the set $\mathcal{Z} = \{(\phi, r) \in S^1 \times \mathbf{R} : f(\phi, r) = 0\}.$
- (d) There is at least one other bifurcation, in addition to the one referred to in part (b). Give all points (ϕ^*, r_c) in $S^1 \times \mathbf{R}$ where there is an additional bifurcation, and state the type (saddle-node, transcritical, or pitchfork). No normal forms are required. (*Hint:* look at your plot of the set \mathcal{Z} .)
- (e) Sketch the phase portrait, in S^1 , of (1) with r = 0. Label each fixed point with its ϕ -value.
- 2. (a) Consider the two-dimensional system for (x(t), y(t)) in the phase plane \mathbb{R}^2 , given by

$$\dot{x} = y, \qquad \dot{y} = x + x^2. \tag{2}$$

- i. Find all the fixed points of (2) in the phase plane.
- ii. Use linear stability analysis to classify each fixed point as hyperbolic or nonhyperbolic. If a fixed point is hyperbolic, determine whether it is an attractor, a repeller, or a saddle point. If a fixed point is non-hyperbolic, determine whether the linearization has pure imaginary eigenvalues, a simple zero eigenvalue, or a double zero eigenvalue.

[25]

Marks

[25]

- iii. Find a conserved quantity. You may **either** write down a conserved quantity and then verify that it is indeed conserved, **or** write down the conditions a conserved quantity for this system must satisfy and then construct a function that satisfies these conditions.
- iv. Sketch the phase portrait of (2). Indicate the (global) stable manifold and the (global) unstable manifold of any saddle point. Indicate homoclinic orbit(s), if any exist.
- (b) Consider the two-dimensional system for (x(t), y(t)) in the phase plane \mathbb{R}^2 , given by

$$\dot{x} = y, \qquad \dot{y} = x + x^2 - \delta y, \tag{3}$$

where δ is a parameter, $\delta > 0$. Note that the fixed points of (3) are the same as those of (2).

- i. Find a Liapunov function V(x, y) so that V decreases along all trajectories of (3) except fixed points. Justify your choice of V (*i.e.* calculate $\dot{V} = \frac{d}{dt}V(x(t), y(t))$ along trajectories and explain carefully why V indeed decreases along all trajectories except fixed points).
- ii. Sketch the phase portrait of (3), for small (positive) δ . Indicate the (global) stable manifold and the (global) unstable manifold of any saddle point. Also indicate the (global) basin of attraction of any stable fixed point.
- [25] 3. Consider the two-dimensional system for (x(t), y(t)) in the phase plane \mathbb{R}^2 , given by

$$\dot{x} = -\alpha x - 5y + x^2 - x^3 - xy^2, \qquad \dot{y} = 5x - \alpha y + xy - x^2 y - y^3, \tag{4}$$

where α is a parameter, $-1 < \alpha < 1$.

- (a) Given that the origin $(x^*, y^*) = (0, 0)$ is the unique fixed point of (4) for all α , use linear stability analysis to classify the fixed point, for each α , as hyperbolic or nonhyperbolic. If the fixed point is hyperbolic, determine whether it is an attractor, a repeller, or a saddle point. If the fixed point is non-hyperbolic, determine whether the linearization has pure imaginary eigenvalues, a simple zero eigenvalue, or a double zero eigenvalue.
- (b) Show that in polar co-ordinates $x = r \cos \theta$, $y = r \sin \theta$ $(r^2 = x^2 + y^2, \tan \theta = y/x, where r \ge 0, \theta \in S^1)$, the system (4) transforms to

$$\dot{r} = -\alpha r + r^2 \cos \theta - r^3, \qquad \dot{\theta} = 5$$

(c) Let $V(x,y) = x^2 + y^2$, and calculate $\dot{V} = \frac{d}{dt}V(x(t), y(t))$ along trajectories. Determine an explicit numerical value of b > 0 so that the closed and bounded disk

$$D = \{ (x, y) \in \mathbf{R}^2 : V(x, y) \le b \}$$

is trapping for all α with $-1 < \alpha < 1$.

(d) Find a critical value α_c , $-1 < \alpha_c < 1$, for which there is a Hopf bifurcation for (4). State whether a closed orbit exists for $\alpha < \alpha_c$ or for $\alpha > \alpha_c$, and give justification. You may use the result of part (c) without having answered it.

- [25]
- 4. Consider the one-dimensional map

$$x_{n+1} = f(x_n)$$

for x_n in the phase line **R**, where

$$f(x) = r - x^2,$$

and r is a parameter, $-\infty < r < \infty$.

- (a) For each r, find every fixed point or determine that no fixed point exists. For each r and for each fixed point, use linear stability analysis to determine whether the fixed point is hyperbolic and stable, hyperbolic and unstable, or non-hyperbolic.
- (b) Find values of (r, x) for which there is:
 - i. a saddle-node bifurcation;
 - ii. a flip bifurcation.

Explain your reasons, but do not attempt to calculate normal forms or period-2 cycles.

(c) It can be shown that for some values of r, there is a period-3 cycle: three distict points $\{p_1, p_2, p_3\}$ such that $f(p_1) = p_2$, $f(p_2) = p_3$, and $f(p_3) = p_1$. If f^3 denotes the third iterate of f, *i.e.* $f^3(x) = f(f(f(x)))$, show that

$$f^3(p_1) = p_1,$$

and

$$(f^3)'(p_1) = f'(p_3)f'(p_2)f'(p_1).$$

(d) Do you expect that the map has a chaotic attractor for some values of r? Explain.

Total

The End

marks [100]