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A non-programmable, non-graphing calculator and one 81
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Marks

[25]
1. Consider the one-dimensional equation for φ(t) in the phase circle S1 = R/(2πZ),

given by
φ̇ = f(φ, r) = r cos φ− sin φ cos φ, (1)

where r ∈ R is a parameter. (Some or all of the following trigonometric identities may
be useful: sin(A+B) = sin A cos B+cos A sin B, cos(A+B) = cos A cos B−sin A sin B,
sin A cos A = 1

2
sin(2A), cos2 A = 1

2
+ 1

2
cos(2A), sin2 A = 1

2
− 1

2
cos(2A).)

(a) Verify that φ∗ = π/2 (mod 2π) is a fixed point of (1), for all r. For all values of r,
−∞ < r < ∞, determine the linearized stability of the fixed point φ∗ and classify
it as: hyperbolic and stable, hyperbolic and unstable, or non-hyperbolic.

(b) Show that a pitchfork bifurcation occurs at φ∗ = π/2 (mod 2π), rc = 1. Find the
normal form of this bifurcation.

(c) Sketch the set Z = {(φ, r) ∈ S1 ×R : f(φ, r) = 0 }.
(d) There is at least one other bifurcation, in addition to the one referred to in part

(b). Give all points (φ∗, rc) in S1 × R where there is an additional bifurcation,
and state the type (saddle-node, transcritical, or pitchfork). No normal forms are
required. (Hint: look at your plot of the set Z.)

(e) Sketch the phase portrait, in S1, of (1) with r = 0. Label each fixed point with
its φ-value.

[25] 2. (a) Consider the two-dimensional system for (x(t), y(t)) in the phase plane R2, given
by

ẋ = y, ẏ = x + x2. (2)

i. Find all the fixed points of (2) in the phase plane.

ii. Use linear stability analysis to classify each fixed point as hyperbolic or non-
hyperbolic. If a fixed point is hyperbolic, determine whether it is an attrac-
tor, a repeller, or a saddle point. If a fixed point is non-hyperbolic, determine
whether the linearization has pure imaginary eigenvalues, a simple zero eigen-
value, or a double zero eigenvalue.
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iii. Find a conserved quantity. You may either write down a conserved quantity
and then verify that it is indeed conserved, or write down the conditions a
conserved quantity for this system must satisfy and then construct a function
that satisfies these conditions.

iv. Sketch the phase portrait of (2). Indicate the (global) stable manifold and the
(global) unstable manifold of any saddle point. Indicate homoclinic orbit(s),
if any exist.

(b) Consider the two-dimensional system for (x(t), y(t)) in the phase plane R2, given
by

ẋ = y, ẏ = x + x2 − δy, (3)

where δ is a parameter, δ > 0. Note that the fixed points of (3) are the same as
those of (2).

i. Find a Liapunov function V (x, y) so that V decreases along all trajecto-
ries of (3) except fixed points. Justify your choice of V (i.e. calculate V̇ =
d
dt

V (x(t), y(t)) along trajectories and explain carefully why V indeed decreases
along all trajectories except fixed points).

ii. Sketch the phase portrait of (3), for small (positive) δ. Indicate the (global)
stable manifold and the (global) unstable manifold of any saddle point. Also
indicate the (global) basin of attraction of any stable fixed point.

3. Consider the two-dimensional system for (x(t), y(t)) in the phase plane R2, given by[25]

ẋ = −αx− 5y + x2 − x3 − xy2, ẏ = 5x− αy + xy − x2y − y3, (4)

where α is a parameter, −1 < α < 1.

(a) Given that the origin (x∗, y∗) = (0, 0) is the unique fixed point of (4) for all α, use
linear stability analysis to classify the fixed point, for each α, as hyperbolic or non-
hyperbolic. If the fixed point is hyperbolic, determine whether it is an attractor, a
repeller, or a saddle point. If the fixed point is non-hyperbolic, determine whether
the linearization has pure imaginary eigenvalues, a simple zero eigenvalue, or a
double zero eigenvalue.

(b) Show that in polar co-ordinates x = r cos θ, y = r sin θ (r2 = x2 +y2, tan θ = y/x,
where r ≥ 0, θ ∈ S1), the system (4) transforms to

ṙ = −αr + r2 cos θ − r3, θ̇ = 5.

(c) Let V (x, y) = x2 + y2, and calculate V̇ = d
dt

V (x(t), y(t)) along trajectories. De-
termine an explicit numerical value of b > 0 so that the closed and bounded
disk

D = { (x, y) ∈ R2 : V (x, y) ≤ b }
is trapping for all α with −1 < α < 1.

(d) Find a critical value αc, −1 < αc < 1, for which there is a Hopf bifurcation for (4).
State whether a closed orbit exists for α < αc or for α > αc, and give justification.
You may use the result of part (c) without having answered it.
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4. Consider the one-dimensional map[25]

xn+1 = f(xn)

for xn in the phase line R, where

f(x) = r − x2,

and r is a parameter, −∞ < r < ∞.

(a) For each r, find every fixed point or determine that no fixed point exists. For each
r and for each fixed point, use linear stability analysis to determine whether the
fixed point is hyperbolic and stable, hyperbolic and unstable, or non-hyperbolic.

(b) Find values of (r, x) for which there is:

i. a saddle-node bifurcation;

ii. a flip bifurcation.

Explain your reasons, but do not attempt to calculate normal forms or period-2
cycles.

(c) It can be shown that for some values of r, there is a period-3 cycle: three distict
points { p1, p2, p3 } such that f(p1) = p2, f(p2) = p3, and f(p3) = p1. If f 3 denotes
the third iterate of f , i.e. f 3(x) = f(f(f(x))), show that

f 3(p1) = p1,

and
(f 3)′(p1) = f ′(p3)f

′(p2)f
′(p1).

(d) Do you expect that the map has a chaotic attractor for some values of r? Explain.

Total

marks
The End

[100]
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