Math 321 Final Exam 8:30am, Tuesday, April 20, 2010 Duration: 150 minutes

Name: _____ St

Student Number: _____

Do not open this test until instructed to do so! This exam should have 17 pages, including this cover sheet. **No** textbooks, calculators, or other aids are allowed. Turn off any cell phones, pagers, etc. that could make noise during the exam. You must remain in this room until you have finished the exam. **Circle your solutions! Reduce your answer as much as possible. Explain your work.** Use the back of the page if necessary.

Read these UBC rules governing examinations:

- (i) Each candidate must be prepared to produce, upon request, a Library/AMS card for identification.
- (ii) Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- (iii) No candidate shall be permitted to enter the examination room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examination.
- (iv) Candidates suspected of any of the following, or similar, dishonest practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
 - Having at the place of writing any books, papers or memoranda, calculators, computers, audio or video cassette players or other memory aid devices, other than those authorized by the examiners.
 - Speaking or communicating with other candidates.
 - Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
- (v) Candidates must not destroy or mutilate any examination material; must hand in all examination papers; and must not take any examination material from the examination room without permission of the invigilator.

Notation/Definition: \mathbb{R} = the set of real numbers; \mathbb{C} =the set of complex numbers; \mathbb{N} =the set of natural numbers; \mathbb{Z} =the set of integers; *i*=the imaginary number $\sqrt{-1}$; All Riemann integrable functions are bounded.

Problem	1	2	3	4	5	6	Total	Extra
Out of	16	12	10	8	10	14	70	5
Score								

Problem 1 (16 points). Let \mathcal{E} be the space of 2π -periodic, continuously differentiable real-valued functions on \mathbb{R} with $\int_{-\pi}^{\pi} f(x) dx = 0$; i.e.

$$\mathcal{E} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \in C^1 \text{ on } \mathbb{R}, \int_{-\pi}^{\pi} f(x) dx = 0, \text{ and } f(x+2\pi) = f(x) \text{ for all } x \in \mathbb{R} \}.$$

Let the norm $\|\cdot\|_{1,\infty}$ on \mathcal{E} be defined as

$$||f||_{1,\infty} = \sup_{x \in \mathbb{R}} |f(x)| + \sup_{x \in \mathbb{R}} |f'(x)|.$$

Let d_1 be a metric on \mathcal{E} defined as $d_1(f,g) = ||f - g||_{1,\infty}$, for $f,g \in \mathcal{E}$.

- (a) (3 points) Recall that for $n \in \mathbb{Z}$ the Fourier coefficient $\widehat{f}(n)$ is given as $\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$. Prove that for $f \in \mathcal{E}$, $|\widehat{f}(n)| \leq ||f||_{1,\infty}$ and $|n||\widehat{f}(n)| \leq ||f||_{1,\infty}$ for all $n \in \mathbb{Z}$.
- (b) (6 points) Prove that the space \mathcal{E} equipped with the metric d_1 is a complete metric space. (Hint: You may want to use the Fundamental Theorem of Calculus.)
- (c) (7 points) Prove that for every $f \in \mathcal{E}$, its Fourier series converges **uniformly** to f on \mathbb{R} . In particular, $f(x) = \sum_{-\infty}^{\infty} \widehat{f}(n)e^{inx}$,

Let R be an operation on the functions in \mathcal{E} , defined as following: for $f \in \mathcal{E}$ written as the infinite sum $f(x) = \sum_{-\infty}^{\infty} \widehat{f}(n)e^{inx}$ (this is possible for all $f \in \mathcal{E}$ because of **Problem 1 (c)**), let the function R[f] on \mathbb{R} be defined as

$$R[f](x) = \sum_{-\infty}^{\infty} |\widehat{f}(100n)|^2 e^{inx} \quad \text{for } x \in \mathbb{R}.$$

Of course, for this definition to work, we **need to prove** that the series expression converges. Verify this and furthermore prove that R gives a map from \mathcal{E} to \mathcal{E} . Namely,

- (a) (3 points) prove that the series $\sum_{-\infty}^{\infty} |\hat{f}(100n)|^2 e^{inx}$ converges uniformly on \mathbb{R} ;
- (b) (2 points) prove that R[f] is a **real**-valued function on \mathbb{R} . (Hint: $f \in \mathcal{E}$ is real-valued);
- (c) (1 point) prove that R[f] is 2π -periodic;
- (d) (1 point) prove that $\int_{-\pi}^{\pi} R[f](x) dx = 0;$
- (e) (5 points) prove that R[f] is a continuously differentiable function on \mathbb{R} .

Problem 3 (10 points). Let \mathcal{E} be the space of functions as given in **Problem 1** and let $K : \mathcal{E} \to \mathcal{E}$ be a mapping that satisfies for all $f, g \in \mathcal{E}, d_1(K[f], K[g]) \leq \frac{1}{2}d_1(f, g)$. Here, the metric d_1 is given in **Problem 1**. Assume that K[0] = 0. Here, 0 denotes the constant zero function. Let $F : \mathcal{E} \to \mathcal{E}$ be defined as F[f] = f + K[f], for $f \in \mathcal{E}$.

- (a) (3 points) Prove that F is injective, i.e. if F[f] = F[g] then f = g.
- (b) (7 points) Prove that for all $g \in \mathcal{E}$, with $||g||_{1,\infty} \leq \frac{1}{2}$, there exists $f \in \mathcal{E}$, with $||f||_{1,\infty} \leq 1$, such that F[f] = g.

Problem 4 (8 points). Let $f : [0,1] \to \mathbb{R}$ be a Riemann integrable function, such that $|f| \leq 1$ on [0,1]. Suppose

$$\int_0^1 f(x)x^n dx = 0$$

for all $n \in \mathbb{Z}$, with $n \ge 0$. Let x_0 be a point in the interval [0, 1]. Assume that f is continuos at x_0 .

Prove that $f(x_0) = 0$.

[Hint: From one of the HW problems, we know that this holds if f is continuous on [0, 1]. But, in this problem f is assumed to be continuous **only** at a fixed point x_0 .)

Problem 5 (10 points). Let $n \in \mathbb{N}$. Suppose the function $F : \mathbb{R}^n \to \mathbb{R}^n$ has its inverse function $G : \mathbb{R}^n \to \mathbb{R}^n$, i.e. F(G(x)) = x and G(F(x)) = x for all $x \in \mathbb{R}^n$. Let **0** denote the origin in \mathbb{R}^n , i.e. $\mathbf{0} = (0, 0, \dots, 0) \in \mathbb{R}^n$. Assume $F(\mathbf{0}) = \mathbf{0}$ and F is differentiable at $x = \mathbf{0}$. Assume that the derivative $DF(\mathbf{0})$ of F at $x = \mathbf{0}$, is invertible. (Note that the derivative is given by an *n*-by-*n* matrix.)

Prove carefully using the definition of derivative of functions of several variables, that the function G is also differentiable at **0**.

(Here is a minor hint: at certain moment, you may want to use the fact that for an *n*-by-*n* invertible matrix *A*, there exists a constant $\lambda > 0$ such that $|A\mathbf{u}| \ge \lambda$ for any vector $\mathbf{u} \in \mathbb{R}^n$ with $|\mathbf{u}| = 1$.)

Problem 6 (14 points). Let $i = \sqrt{-1}$ be the pure imaginary number. Let $\{f_n\}$ be the sequence of functions $f_n : \mathbb{R} \to \mathbb{C}$ defined as $f_n(x) = e^{inx}$ for $x \in \mathbb{R}$, i.e. $f_1(x) = e^{ix}$, $f_2(x) = e^{i2x}$, $f_3(x) = e^{i3x}$, \cdots .

Let $\{g_n\}$ be a sequence of 2π -periodic Riemann integrable functions $g_n : \mathbb{R} \to \mathbb{R}$. Assume that for all n, $|g_n(x) - g_n(y)| \le |x - y|$ for all $x, y \in \mathbb{R}$. Consider the sequence of 2π -periodic functions $\{f_n * g_n\}$, where $f_n * g_n : \mathbb{R} \to \mathbb{C}$ is given by

$$f_n * g_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_n(x-t)g_n(t)dt \quad \text{for } x \in \mathbb{R}.$$

(a) (7 points) Prove that there exists a subsequence $\{h_k\}$ of $\{f_n * g_n\}$ such that as $k \to \infty$, h_k converges uniformly to a function, say h_{∞} , on \mathbb{R} .

(Hint: Observe that for $n \ge 1$, $f_n * g_n = f_n * (g_n - g_n(0))$.)

(b) (5 points) Let $\{u_k\}$ be a subsequence of $\{f_n * g_n\}$ such that $\{u_k\}$ converges uniformly on \mathbb{R} . (Such uniformly convergent subsequence exists by the result of (a).) Prove that as $k \to \infty$, $u_k \to 0$ uniformly on \mathbb{R} , i.e.

$$\lim_{k \to \infty} \left[\sup_{x \in \mathbb{R}} |u_k(x)| \right] = 0.$$

(Hint: this problem could be hard.)

(c) (2 points) Use (a) (or the solution of (a)) and (b) to prove that in fact $f_n * g_n \to 0$ uniformly on \mathbb{R} .

Extra Problem (5 points). (This problem is only for extra mark, and it could be difficult. Do not try this unless you have time left **after** finishing all the previous problems.)

Let \mathcal{E} be the space of functions given in **Problem 1**, and let $R : \mathcal{E} \to \mathcal{E}$ be the mapping given in **Problem 2**. Let $X = \{f \in \mathcal{E} \mid ||f||_{1,\infty} \leq 1\}$, i.e X is the subset of \mathcal{E} consisting of functions f with $||f||_{1,\infty} \leq 1$. **Prove** that R satisfies that for all $f, g \in X$,

$$d_1(R[f], R[g]) \le \frac{1}{2} d_1(f, g).$$

Here, the metric d_1 is as given in **Problem 1**. You are allowed/encouraged to use the results/statements of **Problem 1** and **Problem 2**. (Hint: If you can solve **Problem 2** (e), it is likely that you can solve this problem. You may want to use the identity $|a|^2 - |b|^2 = (|a| + |b|)(|a| - |b|)$ and the inequality

$$\left||a| - |b|\right| \le |a - b|$$

for complex numbers $a, b \in \mathbb{C}$.)