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Final Exam
December 12, 2012

8:30–11:00

No books. No notes. No calculators. No electronic devices of any kind.

Problem 1. (5 points)
(a) Consider the parametrized space curve

~r(t) = 〈cos(t), sin(t), t2〉 .

Find a parametric form for the tangent line at the point corresponding to
t = π.

(b) Find the tangential component aT (t) of acceleration, as a function of t, for the
parametrized space curve of (a).

Problem 2. (5 points)
(a) Let

~r(t) = 〈2 sin3 t, 2 cos3 t, 3 sin t cos t〉 .

Find the unit tangent vector to this parametrized curve at t = π/3, pointing
in the direction of increasing t.

(b) Reparametrize the vector function ~r(t) from (a) with respect to arc length
measured from the point t = 0 in the direction of increasing t.

Problem 3. (6 points)

(a) Consider the vector field ~F = 〈3y, x− 1〉 in R2. Compute the line integral∫
L

~F · d~r ,

where L is the line segment from (1, 1) to (2, 2).

(b) Find an oriented path C from (2, 2) to (1, 1) such that∫
C

~F · d~r = 4 ,

where ~F is the vector field from (a).
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Problem 4. (6 points)

(a) Find the curl of the vector field ~F = 〈2 + x2 + z, 0, 3 + x2z〉.
(b) Let C be the curve in R3 from the point (0, 0, 0) to the point (2, 0, 0), consisting

of three consecutivce line segments connecting the points (0, 0, 0) to (0, 0, 3),
(0, 0, 3) to (0, 1, 0), and (0, 1, 0) to (2, 0, 0). Evaluate the line integral∫

C

~F · d~r ,

where ~F is the vector field from (a).

Problem 5. (6 points)
(a) Consider the surface S given by the equation

x2 + z2 = cos2 y ,

Find an equation for the normal plane to S at the point (1
2
, π
4
, 1
2
).

(b) Compute the integral ∫∫
S

sin y dS ,

where S is the part of the surface from (a) lying between the planes y = 0 and
y = 1

2
π.

Problem 6. (6 points)
(a) Let S be the bucket shaped surface consisting of the cylindrical surface y2 +

z2 = 9 between x = 0 and x = 5, and the disc inside the yz-plane of radius
3 centered at the origin. (The bucket S has a bottom, but no lid.) Orient S
in such a way that the unit normal points outward. Compute the flux of the
vector field ∇× ~G through S, where ~G = 〈x,−z, y〉.

(b) Compute the flux of the vector field ~F = 〈2 + z, xz2, x cos y〉 through S, where
S is as in (a).

Problem 7. (6 points)

(a) Find the divergence of the vector field ~F = 〈z + sin y, zy, sinx cos y〉.
(b) Find the flux of the vector field ~F of (a) through the sphere of radius 3 centred

at the origin in R3.
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Problem 8. (10 points)
True or false? Put the answers in your exam booklet, please. No justifictions
necessary.

1. ~∇ × (~a × ~r) = ~0, here ~a is a constant vector in R3, and ~r is the vector field
~r = 〈x, y, z〉.

2. ~∇ · (~∇f) = 0, for all scalar fields f on R3 with continuous second partial
derivatives.

3. ~∇(~∇ · ~F ) = ~0, for every vector field ~F in R3 with continuous second partial
derivatives.

4. Suppose ~F is a vector field with continuous partial derivatives in the region
D, where D is R3 without the origin. If div ~F = 0, then the flux of ~F through
the sphere of radius 5 with center at the origin is 0.

5. Suppose ~F is a vector field with continuous partial derivatives in the region
D, where D is R3 without the origin. If ~∇ × ~F = 0, then

∫
C
~F · d~r = 0, for

every simple and smooth closed curve C in R3 which avoids the origin.

6. If a vector field ~F is defined and has continuous partial derivatives everywhere
in R3, and it satisfies div ~F > 0, everywhere, then, for every sphere, the flux
out of one hemisphere is larger than the flux into the opposite hemisphere.

7. If ~r(t) is a path in R3 with constant curvature κ, then ~r(t) parametrizes part
of a circle of radius 1/κ.

8. The vector field ~F = 〈 −y
x2+y2

, x
x2+y2

, z〉 is conservative in its domain, which is

R3 without the z-axis.

9. If all flow lines of a vector field in R3 are parallel to the z-axis, then the
circulation of the vector field around every closed curve is 0.

10. If the speed of a moving particle is constant, then its acceleration is orthogonal
to its velocity.


