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Problem 1 of 10 [7 points]

Let r(t) = 〈3 cos t, 3 sin t, 4t〉 be the position vector of a particle as a function of time t ≥ 0.

(a) (2 points) Find the velocity of the particle as a function of time t.

(b) (5 points) Find the arclength of its path between t = 1 and t = 2.
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Problem 2 of 10 [9 points]

Let C be the upper half of the unit circle centred on (1, 0) (i.e. that part of the circle which
lies above the x axis), oriented clockwise. Compute the line integral∫

C

xy dy.
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Problem 3 of 10 [8 points]

Let S be the surface given by

s(u, v) = 〈u+ v, u2 + v2, u− v〉, −2 ≤ u ≤ 2,−2 ≤ v ≤ 2

(a) (4 points) Find the tangent plane to the surface at the point (2, 2, 0).

(b) (2 points) This is a surface you are familiar with. What surface is it (it may be just a
portion of one of the following)? Circle one:

sphere helicoid ellipsoid saddle parabolic bowl cylinder cone plane

(c) (2 points) In which direction does the parametrisation orient the surface?
Circle the correct choices: In the ( positive / negative ) ( x / y / z ) direction.
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Problem 4 of 10 [8 points]

Let
F(x, y) = 〈y2 − e−y2

+ sinx, 2xye−y2
+ x〉.

Let C be the boundary of the triangle with vertices (0, 0), (1, 0) and (1, 2), oriented counter-
clockwise. Compute ∫

C

F · dr.

Hint: Don’t do the integral directly.
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Problem 5 of 10 [14 points]

Let
F(x, y, z) = 〈y

x
+ x1+x2

, x2 − y1+y2
, cos5(ln z)〉.

(a) (2 points) Write down the domain D of F.

(b) (1 points) Circle the correct statement(s):

(a) D is connected.

(b) D is simply connected.

(c) D is disconnected.

(c) (2 points) Compute ∇× F.
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(d) (8 points) Let C be the square with corners (3 ± 1, 3 ± 1) in the plane z = 2, oriented
clockwise (viewed from above, i.e. down z-axis). Compute∫

C

F · dr.

Hint: Don’t do it directly.

(e) (1 point) Is F conservative? Circle one: Yes No
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Problem 6 of 10 [8 points]

Let
F(x, y, z) = 〈e−y2

+ y1+x2
+ cos(z), −z, y〉.

Let S be the surface which consists of two parts:

• the portion of the paraboloid y2 + z2 = 4(x+ 1) satisfying 0 ≤ x ≤ 3 and

• the portion of the sphere x2 + y2 + z2 = 4 satisfying x < 0.

and is oriented outward. Compute ∫∫
S

curl F · dS.

Hint: Don’t do it directly.
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Problem 7 of 10 [7 points]

Let
F(x, y, z) = 〈1 + z1+z1+z

, 1 + z1+z1+z
, 1〉.

Let S be the portion of the surface

x2 + y2 = 1− z4

which is above the xy-plane. What is the flux of F downward through S?
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Problem 8 of 10 [7 points]

Let
F(x, y) = 〈1, y g(y)〉,

and suppose that g(y) is a function defined everywhere with everywhere continuous partials.
Show that for any curve C whose endpoints P and Q lie on the x-axis,

distance between P and Q =

∣∣∣∣∣∣
∫
C

F · dr

∣∣∣∣∣∣ .
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Problem 9 of 10 [22 points]

Short Answer. Only your answer counts.

(a) (1 point) In the curve shown below (a helix lying in the surface of a cone), is the
curvature increasing, decreasing, or constant as z increases?

Circle the answer: increasing decreasing constant

(b) (2 points) Of the two functions shown below, one is a function f(x) and one is its
curvature κ(x). Which is which?

f(x) is (circle one): C D
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(c) (3 points) Let C be the curve of intersection of the cylinder x2 + z2 = 1 and the saddle
xz = y. Parametrise C.

r(t) =

domain:

(d) (4 points) Let H be the helical ramp (also known as a helicoid) which revolves around
the z-axis in a clockwise direction viewed from above, beginning at the y-axis when
z = 0, and rising 2π units each time it makes a full revolution. Let S be the the portion
of H which lies outside the cylinder x2 + y2 = 4, above the z = 0 plane and below the
z = 5 plane.

Choose one of the following functions and give the domain on which the function you
have chosen parametrises S. (Hint: Only one of the following functions is possible.)

(a) s(u, v) = 〈u cos v, u sin v, u〉
(b) s(u, v) = 〈u cos v, u sin v, v〉
(c) s(u, v) = 〈u sin v, u cos v, u〉
(d) s(u, v) = 〈u sin v, u cos v, v〉

domain:

(e) (2 points) Write down a parametrised curve of zero curvature and arclength 1.

r(t) =

domain:

(f) (2 points) If ∇·F is a constant C on all of R3, and S is a cube of unit volume such that
the flux outward through each side of S is 1, what is C?

C =
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(g) (2 points) Let
F(x, y) = 〈ax+ by, cx+ dy〉.

Give the full set of a, b, c and d such that F is conservative.

(h) (1 point) If r(s) has been parametrised by arclength (i.e. s is arclength), what is the
arclength of r(s) between s = 3 and s = 5?

arclength:

(i) (2 points) Let F be a 2D vector field which is defined everywhere except at the points
marked P and Q. Suppose that ∇ × F = 0 everywhere on the domain of F. Consider
the five curves R, S, T , U , and V shown in the picture. Which of the following is
necessarily true?

(a)
∫
S F · dr =

∫
T F · dr

(b)
∫
R F · dr =

∫
S F · dr =

∫
T F · dr =

∫
U F · dr = 0

(c)
∫
R F · dr +

∫
S F · dr +

∫
T F · dr =

∫
U F · dr

(d)
∫
U F · dr =

∫
R F · dr +

∫
S F · dr

(e)
∫
V F · dr = 0
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(j) (2 points) Write down a 3D vector field F such that for all closed surfaces S, the volume
enclosed by S is equal to ∫∫

S

F · dS.

F(x, y, z) =

(k) (1 point) Consider the vector field F shown below.
curl F at P is (circle one): positive negative zero
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Problem 10 of 10 [10 points]

Say whether the following statements are true (T) or false (F). Only your answer counts.
You will get 1 point for each correct answer, 0 for each wrong or unanswered.

T F If F is a 3D vector field defined on all of R3, and S1 and S2 are two surfaces with the
same boundary, but

∫∫
S1

F · dS 6=
∫∫

S2
F · dS, then div F is not zero anywhere.

T F If F is a vector field satisfying curl F = 0 whose domain is not simply-connected, then
F is not conservative.

T F The osculating circle of a curve C at a point has the same unit tangent vector, unit
normal vector, and curvature as C at that point.

T F A planet orbiting a sun has period proportional to the cube of the major axis of the
orbit.

T F For any 3D vector field F, div(curl F) = 0.

T F A field whose divergence is zero everywhere in its domain has
∫∫

S F · dS = 0 for all
closed surfaces S in its domain.

T F The gravitational force field is conservative.

T F If F is a field defined on all of R3 such that
∫
C F · dr = 3 for some curve C, then ∇×F

is non-zero at some point.

T F The normal component of acceleration for a curve of constant curvature is constant.

T F The curve defined by

r1(t) = cos(t4) i + 3t4 j, −∞ < t <∞,

is the same as the curve defined by

r2(t) = cos t i + 3tk, −∞ < t <∞.
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