- 1. Let \mathbf{F} , \mathbf{G} be vector fields, and f, g be scalar fields. Assume \mathbf{F} , \mathbf{G} , f, g are defined on all of \mathbb{R}^3 and have continuous partial derivatives of all orders everywhere. Mark each of the following as True (T) or False (F). No reason or justification is required.
- (1) If C is a closed curve and grad $f = \mathbf{0}$ then $\int_C f ds = 0$.
- (2) If $\mathbf{r}(t)$ is a parametrization of a smooth curve C, and the binormal $\mathbf{B}(t)$ is constant, then C is a straight line.
- (3) If $\mathbf{r}(t)$ is the position of a particle which travels with constant speed then $\mathbf{r}' \cdot \mathbf{r}'' = 0$.
- (4) If C is a path from points A to B then the line integral $\int_C (\mathbf{F} \times \mathbf{G}) . d\mathbf{r}$ is independent of the path C.
- (5) The line integral $\int_C f ds$ does not depend on the orientation of the curve C.
- (6) $\iint_S (\operatorname{curl} \mathbf{F}.\mathbf{n}) dS = 0$ for every closed surface S if and only if \mathbf{F} is conservative.
- (7) If S is a parametric surface $\mathbf{r}(u,v)$ then a normal to S is given by

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial u}.$$

(8) The surface area of the parametric surface S given by $\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$, $(u,v) \in D$, is given by

$$\iint_{D} \left(1 + \left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2\right)^{1/2} dA.$$

- (9) If **F** is the velocity field of an incompressible fluid then div $\mathbf{F} = 0$.
- (10) $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = (\operatorname{div} \mathbf{F})\mathbf{G} + (\operatorname{div} \mathbf{G})\mathbf{F}.$

2. Let C be the space curve

$$\mathbf{r}(t) = (e^t - e^{-t})\mathbf{i} + (e^t + e^{-t})\mathbf{j} + 2t\mathbf{k}.$$

(a) Find \mathbf{r}' , \mathbf{r}'' and the curvature of C.

(b) Find the length of the curve between $\mathbf{r}(0)$ and $\mathbf{r}(1)$.

3. Let D be the domain consisting of all (x,y) such that x>1, and let ${\bf F}$ be the vector field

$$\mathbf{F}(x,y) = -\frac{y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j}.$$

Is \mathbf{F} conservative on D? Give reasons for your answer.

4. Let

$$\mathbf{F}(x,y) = (\frac{3}{2}y^2 + e^{-y} + \sin x)\mathbf{i} + (\frac{1}{2}x^2 + x - xe^{-y})\mathbf{j}.$$

Find $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the boundary of the triangle (0,0), (1,-2), (1,2), oriented anticlockwise.

5. Let S be the part of the paraboloid $z=1-x^2-y^2$ lying above the xy plane. At (x,y,z) S has density

$$\rho(x, y, z) = \frac{z}{(5 - 4z)^{1/2}}.$$

Find the centre of mass of S.

6. Evaluate $\iint_S (\operatorname{curl} \mathbf{F}.\mathbf{n}) dS$ where S is that part of the sphere $x^2 + y^2 + z^2 = 2$ above the plane z = 1, **n** is the upward unit normal, and

$$\mathbf{F}(x, y, z) = -y^2 \mathbf{i} + x^3 \mathbf{j} + (e^x + e^y + z) \mathbf{k}.$$

7. Let B be the solid region lying between the planes x = -1, x = 1, y = 0, y = 2 and bounded below by the plane z = 0 and above by the plane z + y = 3. Let S be the surface of B. Find the flux of the vector field

$$\mathbf{F}(x, y, z) = (x^2 z + \cos \pi y)\mathbf{i} + (yz + \sin \pi z)\mathbf{j} + (x - y^2)\mathbf{k}$$

outwards through S.