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room after the expiration of one half hour, or to leave during
the first half hour of examination.
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candidates.
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Problem 1. (10 points.) Let r(t) be a vector valued function. Let r′, r′′, and r′′′ denote
dr
dt

, d2r
dt2

, and d3r
dt3

respectively. Express

d

dt
[(r× r′) · r′′]

in terms of r, r′, r′′, and r′′′. Select the correct answer.

1. (r′ × r′′) · r′′′

2. (r′ × r′′) · r + (r× r′) · r′′′

3. (r× r′) · r′′′

4. 0

5. None of the above.



December 2005 Math 317 Name: Page 3 out of 12

Problem 2. (2 points each.) Say whether the following statements are true (T) or false
(F). You may assume that all functions and vector fields are defined everywhere and have
derivatives of all orders everywhere. You do not need to give reasons; this problem will be
graded by answer only.

1. The divergence of ∇× F is zero, for every F.

2. In a simply connected region,
∫

C
F · dr depends only on the endpoints of C.

3. If ∇f = 0, then f is a constant function.

4. If ∇× F = 0, then F is a constant vector field.

5. If div F = 0, then
∫∫

S
F · dS = 0 for every closed surface S.

6. If
∫

C
F · dr = 0 for every closed curve C, then ∇× F = 0.

7. If r(t) is a path in three space with constant speed |v(t)|, then the acceleration is
perpendicular to the tangent vector, i.e. a ·T = 0.

8. If r(t) is a path in three space with constant curvature κ, then r(t) parameterizes part
of a circle of radius 1/κ.

9. Let F be a vector field and suppose that S1 and S2 are oriented surfaces with the same
boundary curve C, and C is given the direction that is compatible with the orientations
of S1 and S2. Then

∫∫
S1

F · dS1 =
∫∫

S2
F · dS2.

10. Let A(t) be the area swept out by the trajectory of a planet from time t0 to time t.
Then dA

dt
is constant.
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Problem 3. (10 points.)
Find the speed of a particle with the given position function

r(t) = 5
√

2ti + e5tj− e−5tk

Select the correct answer:

1. |v(t)| = (e5t + e−5t)

2. |v(t)| =
√

10 + 5et + 5e−t

3. |v(t)| =
√

10 + e10t + e−10t

4. |v(t)| = 5(e5t + e−5t)

5. |v(t)| = 5(et + e−t)



December 2005 Math 317 Name: Page 5 out of 12

Problem 4. (10 points.) Find the correct identity, if f is a function and G and F are
vector fields. Select the true statement.

1. div(fF) = f curl(F) + (∇f)× F

2. div(fF) = f div(F) + F · ∇f

3. curl(fF) = f div(F) + F · ∇f

4. None of the above are true.
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Problem 5. (10 points.) Let S be the part of the paraboloid z+x2 +y2 = 4 lying between
the planes z = 0 and z = 1. For each of the following, indicate with a yes or a no whether
it correctly parameterizes the surface S. You do not need to give reasons; only the yes/no
answer will be graded.

r(u, v) = ui + vj + (4− u2 − v2)k, (u, v) ∈ {0 ≤ u2 + v2 ≤ 1}

r(u, v) = (
√

4− u cos v)i + (
√

4− u sin v)j + uk, (u, v) ∈ {0 ≤ u ≤ 1, 0 ≤ v ≤ 2π}

r(u, v) = (u cos v)i + (u sin v)j + (4− u2)k, (u, v) ∈ {
√

3 ≤ u ≤ 2, 0 ≤ v ≤ 2π}
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Problem 6. (10 points.) Let S be the part of the plane

x + y + z = 2

that lies in the first octant oriented so that N has a positive k component. Let

F = xi + yj + zk.

Evaluate the flux integral ∫∫
S

F · dS.
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Problem 7. (10 points.) Consider the vector field F(x, y, z) = 2xi + 2yj + 2zk.

1. Compute curlF.

2. If C is any path from (0, 0, 0) to (a1, a2, a3) and a = a1i + a2j + a3k, show that∫
C

F · dr = a · a.
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Problem 8. (10 points.)
Let

F = x sin yi− y sin xj + (x− y)z2k.

Use Stoke’s theorem to evaluate ∫
C

F · dr

along the path consisting of the straight line segments successively joining the points P0 =
(0, 0, 0) to P1 = (π/2, 0, 0) to P2 = (π/2, 0, 1) to P3 = (0, 0, 1) to P4 = (0, π/2, 1) to
P5 = (0, π/2, 0), and back to (0, 0, 0).
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Problem 9. (10 points.) Let S be the hemisphere {x2 + y2 + z2 = 1, z ≥ 0} oriented with
N pointing away from the origin. Evaluate the flux integral∫∫

S

F · dS

where
F = (x + cos(z2))i + (y + ln(x2 + z5))j +

√
x2 + y2k.
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