The University of British Columbia

Final Examination - April 23, 2008

Mathematics 316

Section 201 Instructor: Anmar Khadra

Closed book examination Time: 2.5 hours

Name	Signature	
Student Number		

Special Instructions:

- Be sure that this examination has 13 pages. Write your name on top of each page.
- Two formula sheets are provided.
- No programmable/graphing calculators or notes are permitted.
- In case of an exam disruption such as a fire alarm, leave the exam papers in the room and exit quickly and quietly to a pre-designated location.

Rules governing examinations

- Each candidate should be prepared to produce her/his library/AMS card upon request.
- No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of examination.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- CAUTION Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
- (a) Making use of any books, papers, or memoranda, other than those authorized by the examiners.
 - (b) Speaking or communicating with other candidates.
- (c) Purposely exposing written papers to the view of other candidates.
- Smoking is not permitted during examinations.

1	20
2	9
3	15
4	16
5	20
6	20
Total	100

[20] 1. Consider the following differential equation

$$xy'' - xy' + y = 0.$$

- (a) Show that $x_0 = 0$ is a regular singular point of the equation.
- (b) Use Frobenius' method to obtain at least one series solution centered at $x_0 = 0$. Explain how your result from using Frobenius' method is consistent with the indicial roots derived in your solution.
- (c) Hence derive the general solution of the differential equation.

April 2008	Math 316	Name:	Page 3 out of 13
[blank page	e]		

[9] 2. Use the eigenfunction-expansion method to solve

$$\nabla^2 u = xy + u$$

inside the unit square (0 < x < 1, 0 < y < 1), given that u is zero on the boundary.

[15] 3. Use the method of separation of variables to solve the wave equation on a unit disk, given by

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = 100 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) \\ u(1,t) = 0 \\ u(r,0) = f(r), & \frac{\partial u}{\partial t}(r,0) = 0, & 0 \le r < 1. \end{cases}$$

What type of symmetry is maintained by this problem?

April 2008	Math 316	Name:	Page 6 out of 13
[blank page	e]		

[16] 4. Consider the following Sturm-Liouville problem, given by

$$(x^{-1}y')' + \lambda x^{-3}y = 0, \quad 1 < x < 2, \quad y(1) = y(2) = 0.$$
 (1)

- (a) Determine if (1) is a regular or singular Sturm-Liouville problem.
- (b) Find the eigenvalues and eigenfunctions of equation (1). (Hint: transform equation (1) into Euler's equation.)
- (c) Express the orthogonality relations between two eigenfunctions corresponding to two different eigenvalues obtained in part (b).

April 2008	Math 316	Name:	Page 8 out of 13
[blank page	e]		

[20] 5. Consider the following IBVP

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - x \\ u(0, t) = 0, \ u(1, t) = \frac{1}{6} \\ u(x, 0) = \frac{7}{6}x^3, \ 0 < x < 1. \end{cases}$$

- (a) Find the steady state solution, v(x), associated with the above problem.
- (b) Derive the IBVP satisfied by the function w(x,t) := u(x,t) v(x) and solve it.
- (c) Use (a) and (b) to find u(x,t).
- (d) Notice that, according to the initial condition, $u(1,0^-) = 7/6$, while according to the second BC, u(1,0) = 1/6. Does the solution in (c) converge uniformly at t = 0? Explain.

April 2008	Math 316	Name:	Page 10 out of 15
[blank page	e]		

[20] 6. Solve the IBVP

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + e^{-t}x \\ u(0,t) = u(1,t) = 0 \\ u(x,0) = \sin(\pi x), \quad 0 < x < 1. \end{cases}$$

Determine the fundamental mode and the long term behaviour of the solution.

April 2008	Math 316	Name:	Page 12 out of 13
[blank page	e]		

Important Integrals

$$\int x \sin(n\pi x) dx = \frac{-x \cos(n\pi x)}{n\pi} + \frac{\sin(n\pi x)}{n^2 \pi^2} + c.$$

$$\int x^3 \sin(n\pi x) dx = \frac{-x^3 \cos(n\pi x)}{n\pi} + \frac{6x \cos(n\pi x)}{n^3 \pi^3} + \frac{(3n^2 \pi^2 x^2 - 6) \sin(n\pi x)}{n^4 \pi^4} + c.$$

Double Fourier Half Range Sine Series Expansion

$$f(x,y) = \sum_{n,m=1}^{\infty} A_{mn} \sin(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y)$$

$$A_{mn} = \frac{4}{ab} \int_{0}^{a} \int_{0}^{b} f(x,y) \sin(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y) dy dx$$

List of Properties and Identities for Bessel Functions

Let m be a nonnegative integer and ν be a nonnegative real number.

- 1. $J_{-m}(x) = (-1)^m J_m(x)$.
- 2. $J_m(-x) = (-1)^m J_m(x)$. i.e., $J_m(x)$ is an even function when m is even and it is an odd function when m is odd.

3.
$$J_m(0) = \begin{cases} 0 & m > 0 \\ 1 & m = 0. \end{cases}$$

4.
$$\lim_{x \to 0^+} Y_m(x) = -\infty$$
.

5.
$$xJ'_{\nu}(x) = \nu J_{\nu}(x) - xJ_{\nu+1}(x)$$
.

6.
$$xJ'_{\nu}(x) = -\nu J_{\nu}(x) + xJ_{\nu-1}(x)$$
.

7.
$$J_{\nu-1}(x) - J_{\nu+1}(x) = 2J'_{\nu}(x)$$
.

8.
$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$
.

9.
$$\frac{d}{dx}[x^{\nu}J_{\nu}(x)] = x^{\nu}J_{\nu-1}(x).$$

10.
$$\frac{d}{dx} [x^{-\nu} J_{\nu}(x)] = -x^{-\nu} J_{\nu+1}(x).$$

11.
$$\int x^{\nu+1} J_{\nu}(x) dx = x^{\nu+1} J_{\nu+1}(x) + c.$$

12.
$$\int x^{-\nu+1} J_{\nu}(x) dx = -x^{-\nu+1} J_{\nu-1}(x) + c.$$