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1. Suppose a conic has two focus points F (4, 0) and F ′(−4, 0).

(a)(5 pt) Find the equation of the conic if a directrix has the equation x = 9.

(b)(5 pt) Find the equation of the conic if the conic has eccentricity e = 2.
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2. (a)(5 pt) Find the equation of the tangent line to the parabola x = y2 at the point (1,−1).

(b)(5 pt) Classify the conic x2 − 6xy + 9y2 = 1.
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3. The triangle 4ABC has vertices A(−1, 2), B(−3,−1) and C(3, 1), and the points P (1, 1
3),

Q(1, 3
2), and R(−5

3 , 1) lie on BC, CA and AB, respectively.

(a)(7 pt) Determine the ratios in which P , Q and R divide the sides of the triangle.

(b)(3 pt) Determine whether or not the lines AP , BQ and CR are concurrent.
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4. (a)(5 pt) Find the Euclidean transformation which is the counterclockwise rotation about the

point (2, 2) by angle
π

3
.

(b)(5 pt) Find the affine transformation which maps the points

(
1
1

)
,

(
4
0

)
and

(
0
2

)
to the points(

1
−1

)
,

(
5
−4

)
and

(
−2
1

)
, respectively.
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(c)(5 pt) Find the Möbius transformation which maps the points 1, 2, i to 1, 2, 3.
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5. (a)(5 pt) Find the image of the line 3x+ y = 4 under the affine transformation t(x) = Ax +

(
1
−1

)
with A =

(
4 5
1 1

)
.

(b)(5 pt) Find the image of the circle |z| = 1 under the Möbius transformation M(z) =
iz + 1

z + i
.
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6.(10 pt) Let two circles S1 and S2 intersect in A and B, and let the diameters of S1 and S2 through B

cut S2 and S1 in C and D. Let S3 be the circle containing B, C, and D. Show that line
←→
AB

passes through the center of circle S3.
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7.(10 pt) The circles C1 and C2 in an Apollonian family of circles have the segments [−11,−6] and
[0, 16], respectively, of the x-axis as diameters. Determine the point circles of the family.
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8. (a)(7 pt) Find the d-line that passes through the two d-points i/3 and −1/3, and sketch it.

(b)(8 pt) Find the Euclidean radius of the non-Euclidean circle C = {z ∈ D : d(
i

3
, z) =

1

3
}.

Do not evaluate or simplify the solution. Note ln 2 ≈ 0.6931 and ln 3 ≈ 1.0986.
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9.(10 pt) Answer YES or NO to the following questions. Anything else will not earn any partial credits.
Answering both YES and NO earns 0.

(a) Is it true that an affine transformation preserves ratio of lengths on parallel lines?

(b) Is it true that, for any point P inside triangle 4ABC, there is an affine transformation t
such that t(P ) is outside of triangle 4t(A)t(B)t(C)?

(c) Is it true that an ellipse can be mapped onto a circle by an affine transformation?

(d) Is it true that an ellipse can be mapped onto a circle by an inversive transformation?

(e) Is it true that an inversion is a Möbius transformation?
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Some Formulas

eccentricity standard eq focus directrix tangent at (x1, y1)

ellipse 0 ≤ e < 1
x2

a2
+
y2

b2
= 1 (±ae, 0) x = ±a/e x1x

a2
+
y1y

b2
= 1

hyperbola e > 1
x2

a2
− y2

b2
= 1 (±ae, 0) x = ±a/e x1x

a2
− y1y

b2
= 1

parabola e = 1 y2 = 4ax (a, 0) x = −a y1y = 2a(x+ x1)

Above b = a
√
|1− e2|

1. Rotation about the origin by angle θ is t

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
, or t(z) = eiθz.

2. Reflection about the line passing the origin with angle θ/2 to the x-axis is

t

(
x
y

)
=

(
cos θ sin θ
sin θ − cos θ

)(
x
y

)
, or t(z) = eiθz̄.

3. The affine transformation of R2 mapping [ 0
0 ], [ 1

0 ] and [ 0
1 ] to P = [ p1p2 ], Q = [ q1q2 ], and

R = [ r1r2 ] is

t(~x) = ~P + A~x, A = ( ~PQ| ~PR) =

(
q1 − p1 r1 − p1

q2 − p2 r2 − p2

)
.

4. Affine transformations preserve collinearity, coincidence, parallel lines, and signed ratio of
lengths along the same direction.

5. Ceva’s and Menelaus’ theorems: P ∈ BC, Q ∈ CA, R ∈ AB, AR
RB ·

BP
PC ·

CQ
QA = ±1 implies

coincidence or collinearity.

6. Inversion in the unit circle: (x, y) 7→ ( x
r2
, y
r2

) where r =
√
x2 + y2. Inversion in the circle

|z −m| = r is z 7→ r2

z̄−m̄ +m.

7. The stereographic projection π : S2 → C satisfies π : (X,Y, Z) 7→ X+iY
1−Z with

π−1 : x+ iy 7→ 1
x2+y2+1

(2x, 2y, x2 + y2 − 1).

8. Inversive transformations on Ĉ are of the form t(z) = M(z) or t(z) = M(z̄) with
M(z) = az+b

cz+d , ad 6= bc. Isometries correspond to M(z) = az + b with |a| = 1.

9. Non-Euclidean transformations on D are t(z) = M(z) or t(z) = M(z̄) with M(z) = az+b
b̄z+ā

,

|b| < |a|. An inversion in the d-line |z − α| = r with |α|2 = r2 + 1 is t(z) = αz̄−1
z̄−ᾱ .

10. The distance function on D is d(z1, z2) = tanh−1( |z1−z2||1−z̄1z2|) and d(z, 0) = tanh−1(|z|). Note

y = tanhx = ex−e−x

ex+e−x and x = tanh−1 y = 1
2 ln 1+y

1−y for 0 ≤ y < 1.


