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1. Each candidate should be prepared to produce his library/AMS card upon request.

2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave

during the first half hour of the examination.

Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities

in examination questions.

CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the

examination and shall be liable to disciplinary action.

(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.

(b) Speaking or communicating with other candidates.

(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness

shall not be received.

3. Smoking is not permitted during examinations.
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1. Consider the Markov chain with state space {0, 1, 2} and transition matrix

P =
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(a)(4 marks) Suppose X0 = 0. Find the probability that X2 = 2.

(b)(4 marks) Find the stationary distribution of the Markov chain.

(c)(1 marks) What proportion of time does the Markov Chain spend in state 2, in the long run?

(d)(1 marks) Suppose X5 = 1. What is the expected additional number of steps (after time 5) until
the first time the Markov chain will return to state 1?
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2. Four black balls and four white balls are divided between urn 1 and urn 2, with four balls in
each urn. At each time step, a ball is chosen from each of the two urns, then the ball from
urn 1 is placed in urn 2, and the ball from urn 2 is placed in urn 1. Let Xn denote the
number of white balls in urn 1 after the nth step. This defines a Markov chain.

(a)(4 marks) Determine the one-step transition matrix for this Markov chain.

(b)(6 marks) Using any method, determine the stationary distribution for the chain. (If you guess the
distribution, be sure to verify that your guess is correct.)
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3. Each day an individual is in an active or inactive state. An active day is followed by an
inactive day with probability α, and an inactive day is followed by an active day with
probability β. This defines a Markov Chain with states “active” and “inactive.”

(a)(2 marks) Draw the transition diagram for the Markov Chain.

(b)(3 marks) Determine the stationary distribution of the Markov Chain.

(c)(5 marks) Now suppose there are 10 such individuals, whose states change independently. What is
the long run proportion of time that there are j active individuals, for j = 0, 1, . . . , 10.
(Explain or prove your answer.)
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4. Suppose that X,Y are independent exponential random variables with parameter λ.

(a)(3 marks) Find P (X < 2Y ).

(b)(4 marks) For a > 0, find P (X > a|X < 2Y ). What is the conditional distribution (give the name
and any parameter(s)) of X given that X < 2Y ?

(c)(3 marks) Which of the following is a correct formula for E(X2|X > 1)?
E[(X + 1)2], (EX + 1)2, EX2 + 1.
Give a brief reason for your answer.



April 12 2017 MATH 303 Final Exam Page 6 of 9

5. Each customer who enters a certain business must be served first by server 1, then by server
2, and finally by server 3. The amount of time it takes to be served by server i is an
exponential random variable with rate µi (i = 1, 2, 3). Suppose you enter the system at a time
when it contains a single customer who is being served by server 3.

(a)(2 marks) What is the probability that server 3 will still be busy when you move over to server 2?

(b)(2 marks) What is the probability that server 3 will still be busy when you move over to server 3?

(c)(6 marks) Suppose that µ1 = µ3 = 1 and µ2 = 2. Find the expected time that you spend in the
system.
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6. A system receives shocks according to a Poisson process with rate λ. Each shock
independently causes the system to fail with probability p. Let T denote the failure time of
the system, and let N be the number of shocks received up to and including time T .

(a)(2 marks) Suppose that N = n. What is the conditional distribution (name and parameter(s)) of
T?

(b)(3 marks) Suppose that a failed system is always immediately replaced by a new system. What is
the distribution (name and parameter(s)) of the number of replacements that occur
during a fixed time interval [0, t]?

(c)(2 marks) Suppose that 5 shocks occur during [0, t]. What is the distribution (name and
parameter(s)) of the number of replacements during [0, t]?

(d)(3 marks) Given that T = t, what is the conditional distribution (name and parameter(s)) of N?
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7. A service centre consists of two servers, each working at an exponential rate of two services
per hour. Customers require service by one server (not both), and are served in order of
arrival. Customers arrive at rate three per hour, and the system has total capacity of at most
three customers. This defines a birth and death chain.

(a)(2 marks) What are the birth and death rates?

(b)(6 marks) Determine the limiting probabilities.

(c)(2 marks) What fraction of potential customers are lost?
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8. A factory has four machines and a single repair technician. For each machine, the operating
time until failure is an exponential random variable with rate 1

4 per hour. The repair time of
a failed machine is an exponential random variable with rate 1

2 per hour. Up to four machines
can be operating at any given time, but at most one machine can be in repair at any time.
This defines a birth and death process, where the state is the number of machines that are
operating.

(a)(2 marks) Write down the birth and death rates.

(b)(4 marks) Write down the balance equations for the limiting probabilities.

(c)(3 marks) Solve the balance equations to obtain the limiting probabilities.

(d)(1 marks) What proportion of time is the repair technician idle?


