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Special Instructions:

No books, notes, or calculators are allowed.
Explain your reasoning carefully. You will be graded on the
clarity of your explanations as well as on the correctness of your
answers.

Rules Governing Formal Examinations

1. Each candidate must be prepared to produce, upon request, a UBCcard for iden-

tification.

2. Candidates are not permitted to ask questions of the invigilators, except in cases

of supposed errors or ambiguities in examination questions.

3. No candidate shall be permitted to enter the examination room after the expiration

of one half hour from the scheduled starting time, or to leave during the first half hour

of the examination.

4. Candidates suspected of any of the following, or similar, dishonest practices shall

be immediately dismissed from the examination and shall be liable to disciplinary

action:

(a) having at the place of writing any books, papers or memoranda, calculators,

computers, sound or image players/recorders/transmitters (including telephones), or

other memory aid devices, other than those authorized by the examiners;

(b) speaking or communicating with other candidates; and

(c) purposely exposing written papers to the view of other candidates or imaging

devices. The plea of accident or forgetfulness shall not be received.

5. Candidates must not destroy or mutilate any examination material; must hand

in all examination papers; and must not take any examination material from the

examination room without permission of the invigilator.

6. Candidates must follow any additional examination rules or directions communi-

cated by the instructor or invigilator.
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Marks

[12] 1. Express all of the following numbers in the form a+ ib with a and b real.

(a) sin
[

− i log
(

1 +
√
3 i

)]

(b) Log
[

1−i
(1+i)3

]

, where Log z is the principal branch of log z

(c) all solutions of sinh z = i√
2

Continued on page 3
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[10] 2. Let u(x, y) = 2x2 − 2y2 − 3x+ y.

(a) Show that u(x, y) is a harmonic function.

(b) Find all analytic functions f(x+ iy) = u(x, y)+ iv(x, y) with u(x, y) = 2x2−2y2−3x+y
and v(x, y) real.

Continued on page 4
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[10] 3. Find a branch of (1 + z)1/2 which is analytic except for z = x ≥ −1 and find its derivative at
z = −2.

Continued on page 5
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[10] 4. Evaluate the contour integral
∫

C

dz

(z̄ − 1)2

where C is the semicircle |z − 1| = 1, Im z ≥ 0 from z = 0 to z = 2.

Continued on page 6
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[10] 5. Find all entire functions f(z) that obey “there is an integer n such that |f(z)| < |z|n + 1 for
all

{

z ∈ C
∣

∣ |z| > 100
}

”.

Continued on page 7
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[12] 6. Let

f(z) =
1

(2z − 1)(z − 2)

(a) Expand f(z) in a Laurent series valid in an annular region that contains z = 1. Give the
region of convergence of your series.

(b) Evaluate
∮

Cπ/4(0)
f(z) dz where Cπ/4(0) is the contour |z| = π/4 traversed once in the

counterclockwise direction.

(c) Find the Taylor series of f(z) about z = 0 and give its region of convergence.

(d) Compute f (4)(0).

Continued on page 8
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Continued on page 9
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[10] 7. (a) Show that

F (z) =

{

1 if z = 0
ez−1

z
if z 6= 0

is an entire function.

(b) Evaluate
∫

C2(0)

cos z
ez−1dz

where C2(0) is the circle |z| = 2 traversed once in the counterclockwise direction.

Continued on page 10
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[10] 8. Find the first four nonzero terms of the Taylor series at z = 0 for

sin z Log (1− z)

where Log z is the principal branch of log z.

Continued on page 11
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[16] 9. Evaluate the following definite integrals.

(a) Ia =

∫ ∞

−∞

eix

(x2 + 1)(x2 + 4)
dx

(b) Ib =

∫ 2π

0

dθ

1− 2α cos θ + α2
where the constant 0 < α < 1.

Continued on page 12
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The End


