THE UNIVERSITY OF BRITISH COLUMBIA

Sessional Examinations - December 2011

MATHEMATICS 300

TIME: 3 hours

NO AIDS ARE PERMITTED.

All seven questions are of equal value. Each question is worth 10 points. A passing mark is 28/70. If you obtain a mark of N/70 it will be treated as a mark of N/60 with a maximum score possible of 60/60.

Value

1. (a) Sketch $S = \{z \in \mathbb{C} : |z + \frac{1}{2}| > \frac{1}{2} \text{ and } |z + 1| < 1\}$

- (b) Find and sketch the image of S under the mapping $w = f(z) = 1 + \frac{1}{1+z}$.
- 2. (a) Carefully state the Cauchy-Riemann equations and explain their connection with the differentiability and analyticity of a function f(z).
 - (b) Find all entire functions f = u + iv for which $v = u^2$.

3. Let $f(z) = \frac{z^2}{z^2 + 4z + 3}$.

- (a) Find and classify all singular points of f(z).
- (b) Determine the residues of f(z) at each of its singular points.
- (c) Evaluate $\oint_C f(z)dz$ where C is the positively oriented square with corners at

 $\pm i$ and $-2 \pm i$.

- (d) Where does the Laurent series of f(z) about z = -1 converge if it is
 - (i) valid near z = -1?
 - (ii) valid for large |z|?
- (e) Find the first four nonzero terms of the Laurent series of f(z) about z = -1 which is valid near z = -1.
- 4. (a) Show that the series $\sum_{n=0}^{\infty} e^{-nz}$ converges uniformly in any half plane $\text{Re } z \ge \delta$, for any fixed $\delta > 0$.
 - (b) Evaluate $f(z) = \sum_{n=0}^{\infty} e^{-nz}$ for Re z > 0.
 - (c) Evaluate $\sum_{n=1}^{\infty} n^2 e^{-n}$. Be sure to justify your steps.

- 5. Consider the improper integral $I(m) = \int_0^\infty \frac{x^m}{1+x^8} dx$, where the constant m is an integer, $m = 0, \pm 1, \pm 2, \dots$
 - (a) For which values of m does I(m) converge?
 - (b) Use contour integration to evaluate I(m), justifying your calculations.
- 6. Suppose γ_1 and γ_2 are arcs in the z-plane that intersect at z_0 . Let α be the angle of intersection. Let w = f(z). In the w-plane, find the angle of intersection at $w_0 = f(z_0)$ of the image arcs $f(\gamma_1)$ and $f(\gamma_2)$ when
 - (a) f(z) = z;
 - (b) f(z) = 1 + z;
 - (c) $f(z) = 1 + z^3$;
 - (d) $f(z) = 1 + \overline{z}$;
 - (e) $f(z) = 1 + \overline{z}^3$.

[Note that the angle of intersection in the w-plane could depend on the value of z_0 .]

- 7. (a) Suppose $\underset{z=0}{\operatorname{Res}} f(z) = A$. Let α be a complex constant. Evaluate $\underset{z=0}{\operatorname{Res}} f(\alpha z)$.
 - (b) Evaluate $\int_{|z|=2}^{\infty} \frac{z^m}{1+z^3} dz$ where the constant m is an integer, $m=0,\pm 1,\pm 2,\ldots$.