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room after the expiration of one half hour, or to leave during
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• Candidates are not permitted to ask questions of the in-
vigilators, except in cases of supposed errors or ambiguities
in examination questions.
• CAUTION - Candidates guilty of any of the following or
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(a) Making use of any books, papers, or memoranda, other
than those authorized by the examiners.

(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other

candidates.
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[15pt] 1. Find all complex solutions to the equation sin z + cos z = 1.
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[8pt] (2a) Find all values a, b, c so that u(x, y) = ax2 + bxy + cy2 is harmonic.
[8pt] (2b) For each such u, find its harmonic conjugate.
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3. For each of the following functions, describe the singularity it has at z0 = 0, find a Laurent
series that converges at z = 3 and specify the domain of convergence for the series.

[5pt] (3a) f(z) =
1

z(z + 2)

[5pt] (3b) g(z) =
z − sin z

z3

[5pt] (3c) h(z) = (1 + z)e1/z2
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4. Suppose f is analytic in the punctured disc D = {0 < |z| < 1}.
[5pt] (4a) If f has a removable singularity at z = 0, prove that f has an anti-derivative in D.
[5pt] (4b) If Res(f, 0) = 0, prove that f has an anti-derivative in D.
[5pt] (4c) If Res(f, 0) 6= 0, prove that f does not have an anti-derivative in D.
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[15pt] 5. Calculate the real integral

∫ ∞

−∞

dx

(x2 + 1)(x2 + 4)
using complex integration. Indicate your

reasoning clearly, including limiting arguments.
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6. Calculate the following integrals

[6pt] (6a)

∮
C

(z̄)2 dz, where C is the circle |z − 1| = 1, oriented counterclockwise.

[6pt] (6b)

∮
|z|=1

z cos(z−1) dz, with the contour oriented counterclockwise.

[6pt] (6c)

∮
|z|=2

e2z

(z + 1)3
dz, with the contour oriented counterclockwise.

[6pt] (6d)

∫
Γ

zez2

dz, where Γ is the curve in the complex plane given by y = sin x for 0 ≤ x ≤ π/2.
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