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Marks

[15] 1. (a) An elastic string of length 4 with fixed ends has an initial shape u(x, 0) = f(x), where

f(x) =

{
0 if 0 ≤ x < 1
1 if 1 ≤ x ≤ 3
0 if 3 < x ≤ 4

It is released from rest at time t = 0. Assume that the displacement u(x, t) satisfies

uxx = utt, 0 ≤ x ≤ 4, t > 0.

Find u(x, t).

(b) Sketch u(x, 0) and u(x, 1).

Continued on page 3
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(a)

Continued on page 4
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[20] 2. Let g(x) = −x be defined for 0 ≤ x ≤ 1.

(a) Extend g(x) as a periodic function of period 1. Find the Fourier series for g(x) in complex
form.

(b) Extend g(x) as an odd function of period 2. Find the Fourier series for g(x) in terms of
sines and cosines.

(c) One end (x = 0) of a copper bar (α2 = 1) of length 1 is maintained at 0◦C while the
other is at 10◦C. Initially the entire bar is at 0◦C. Find the temperature u(x, t) in the
bar if u(x, t) satisfies

ut = uxx 0 ≤ x ≤ 1, t > 0

u(0, t) = 0 t > 0

u(1, t) = 10 t > 0

Continued on page 5
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(a)

(b)

(c)

Continued on page 7
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[15] 3. (a) By direct integration, find the Fourier Transform of the function

a(t) = rect
(

t
2

)
cos(πt).

(b) Find the Fourier Transform of the function

b(t) =
{

cos(t) if π < t < 3π
0 elsewhere

(c) Find the Inverse Fourier Transform of

ĉ(ω) =
4

2 + 3iω − ω2

Continued on page 8
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(a)

(b)

(c)
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[15] 4. In this problem you will analyze this circuit:

+

−
x(t)

R

L
C

+

−

y(t)

The input signal is a time-varying voltage x(t) and the output signal is the voltage y(t) mea-
sured across the inductor. Low-frequency signals face little opposition to flow through the
inductor, so they get dissipated mostly by the resistor. High-frequency signals flow easily
through the capacitor, so they also get dissipated by the resistor. But signals of some inter-
mediate frequency are opposed by both reactive components, and produce large-amplitude
outputs. The signals described above are related by the constant coefficient differential equa-
tion

RLCy′′(t) + Ly′(t) + Ry(t) = Lx′(t).

(a) Let x̂(ω) and ŷ(ω) be the Fourier transforms of x(t) and y(t). Define

H(ω) =
ŷ(ω)

x̂(ω)
, A(ω) = |H(ω)|, H(ω) = A(ω)eiφ(ω).

Find simple algebraic expressions for H(ω), A(ω) and tan(φ(ω)).

(b) Use calculus to find the value of ω > 0 at which A(ω) is maximized. This is the circuit’s
resonant frequency. Express your answer in terms of L, R, and C. [Hint: Maximize
|A(ω)|2. ]

Continued on page 10
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(a)

(b)
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[15] 5. Consider the discrete time signal

x[n] = sin πn
2 cos(πn)

(a) Is x[n] periodic? If so, find a period N .

(b) Is the discrete Fourier transform x̂[k] of this signal periodic? If so, find a period for x̂[k].

(c) Find the discrete Fourier transform x̂[k] of this signal.

Continued on page 12
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(a)

(b)

(c)
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[20] 6. Consider an LTI system for which

y[n] + 1
4y[n − 1] − 1

8y[n − 2] = x[n]

(a) Use X(z) and Y (z) to denote the z–transforms of x[n] and y[n], respectively. Express
the z-transform of y[n] + 1

4y[n − 1] − 1
8 in terms of Y (z).

(b) Find the system function H(z) = Y (z)
X(z) for this system.

(c) Plot the poles and zeroes of H(z) and indicate the region of convergence, assuming that
the system is causal.

(d) Using z–transforms, determine y[n] if

x[n] =
(

1
2

)n
u[n]

Continued on page 14
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(a)

(b)

(c)

(d)

The End
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