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1. Consider the differential equation

6x2y00 + 7xy0 − (1 + x)y = 0 (1)

(a) Classify the points 0 · x <∞ as ordinary points, regular singular points, or irregular singular points.

(b) Find two values of r such that there are solutions of the form y(x) =
∞P
n=0

anx
n+r.

(c) Use the series expansion in (b) to determine two independent solutions of (1). You only need to calculate
the first three non-zero terms in each case.

[20 marks]
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2. Consider the following initial boundary value problem for the heat equation:

ut = uxx − 4u , 0 < x < π , t > 0

ux(0, t) = 0 , ux(π, t) = 1 (2)

u(x, 0) = 4 cos(4x)

(a) Determine a steady state solution to the boundary value problem. [5 marks]

(b) Use this steady state solution to determine the solution to the boundary value problem (2) by separation of
variables. [12 marks]

(c) Briefly describe how you would use the method of finite differences to obtain an approximate solution
this boundary value problem. Use the notation ukn ' u(xn, tk) to represent the nodal values on the finite
difference mesh. Explain how you propose to approximate the boundary condition ux(π, t) = 1.

[8 marks]

Hint: It might be useful to know that
R π
0
cosh(2x) cos(nx) dx = 2(−1)n sinh(2π)

4+n2

[total 25 marks]
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3. Consider the following initial-boundary value problem:

utt + k
2u = c2uxx, 0 < x < π

u(0, t) = u(π, t) = 0

u(x, 0) = f(x), ut(x, 0) = 0.

(a) Use separation of variables to determine the solution to this boundary value problem.

(b) If k = 0, c = π, and if the initial displacement f(x) = sin(x), determine the shape of the string at time
t = 1/2. [15 marks]
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4. Use separation of variables to solve the following mixed boundary value problem for a wedge shaped region in
the first quadrant:

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < a, 0 < θ < π/2

u(r, 0) = 0 and
∂u

∂θ
(r,π/2) = 1

u(a, θ) = 1 + θ and u(r, θ)
r→0
< ∞

[20 marks]
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5. Solve the inhomogeneous heat conduction problem:

ut = uxx + cos(t) cos(x), 0 < x < π/2, t > 0

ux(0, t) = u(π/2, t) = 0

u(x, 0) = 0.

Hint: It may be useful to know thatZ
eγt cos t dt =

eγt(γ cos(t) + sin(t))

γ2 + 1
[20 marks]
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