The University of British Columbia

Final Examination - April 12, 2006

Mathematics 257

Section 201 Instructor: A. Khadra

Closed book examination Time: 2.5 hours

Name	Signature
Student Number	

Special Instructions:

- Be sure that this examination has 15 pages. Write your name on top of each page.
- A formula sheet is provided. No programmable/graphing calculators or notes are permitted.
- In case of an exam disruption such as a fire alarm, leave the exam papers in the room and exit quickly and quietly to a pre-designated location.

Rules governing examinations

- Each candidate should be prepared to produce her/his library/AMS card upon request.
- No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of examination.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- CAUTION Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
- (a) Making use of any books, papers, or memoranda, other than those authorized by the examiners.
 - (b) Speaking or communicating with other candidates.
- (c) Purposely exposing written papers to the view of other candidates.
- Smoking is not permitted during examinations.

1	20
2	20
3	20
4	10
5	20
6	10
Total	100

April	2006	Math	257

Name:		
-Name:		

[20]

1. Consider the following second order linear homogeneous differential equation, given by

$$2xy'' - y' + 2y = 0 (1)$$

- (a) Prove that the point $x_0 = 0$ is a regular singular point for equation (1).
- (b) Apply Frobenius' method to find the first four terms of the two linearly independent series solutions for equation (1). What is the general solution?
- (c) Is your result is part (b) consistent with the values of the indicial roots obtained? Explain.

April 2006	Math 257	Name:	Page 3 out of 15

[blank page]

[20] 2. Seek a solution of the form u(x,t) = X(x)T(t) to solve the damped wave equation given by

 $\begin{cases} \frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \\ u(0,t) = u(\pi,t) = 0 \\ u(x,0) = 0, \frac{\partial u}{\partial t}(x,0) = 10. \end{cases}$

What is the behaviour of u(x,t) as $t \to \infty$?

April 2006	$Math\ 257$	Name:	Page 5 out of 15
[blank page	<u>e</u>]		

[20] 3. Solve the following Poisson problem given by

$$\begin{cases}
\nabla^2 u = xy \\
u(0,y) = u(1,y) = 0 \\
u(x,0) = 0, \ u(x,1) = x.
\end{cases}$$

April 2006	Math 257	Name:	Page 7 out of 15
[blank page]		

[10] 4. Consider the following Sturm-Liouville problem, given by

$$xy'' + y' + \left[-\frac{4}{x} + \lambda^2 x \right] y = 0, \quad 0 < x < 1, \ y(0) \text{ is finite, } \ y(1) = 0.$$
 (2)

- (a) Write (2) in the standard Sturm-Liouville form and determine if it is a regular or singular Sturm-Liouville problem.
- (b) Determine the eigenvalues and the eigenfunctions of equation (2).
- (c) Express the orthogonality relations between two eigenfunctions corresponding to two different eigenvalues obtained in part (b).

April 2006	Math 257	Name:	Page 9 out of 15
[blank page	.]		

[20] 5. Apply the method of separation of variables to solve the BVP given by

$$\begin{cases} u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0 \\ u(r,0) = u(r,\frac{\pi}{2}) = 0 \\ \frac{\partial u}{\partial r}(1,\theta) = \theta. \end{cases}$$

(Hint: If k is the separation constant, then, for $k \leq 0$, the trivial solution will be generated.)

April 2006	Math 257	Name:	Page 11 out of 15
[blank page	<u>e</u>]		

[10] 6. The solution to the IBVP

$$\begin{cases}
 u_t = c^2 (u_{rr} + \frac{1}{r} u_r), & 0 < r < a, \ t > 0 \\
 u(a, t) = 0, \ t > 0, \\
 u(r, 0) = f(r), & 0 < r < a,
\end{cases} \tag{3}$$

is given by

$$u(r,t) = \sum_{n=1}^{\infty} A_n e^{-c^2 \lambda_n^2 t} J_0(\lambda_n r)$$

with

$$A_n = \frac{2}{a^2 J_1^2(\alpha_n)} \int_0^a r f(r) J_0(\lambda_n r) dr,$$

where $\lambda_n = \alpha_n/a$ and α_n is the nth positive zero of J_0 .

- (a) Solve equation (3) for a = c = 1 and f(r) = 100.
- (b) Is the problem described by equation (3) radially symmetric?

April 2006	Math 257	Name:	Page 13 out of 15
[blank page	e]		

List of Formulae

• Integrals:

$$\int x \cos ax dx = \frac{1}{a} x \sin ax + \frac{1}{a^2} \cos ax + c \quad (a \neq 0).$$

$$\int x \sin ax dx = -\frac{1}{a} x \cos ax + \frac{1}{a^2} \sin ax + c \quad (a \neq 0).$$

• If

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(\frac{n\pi}{L}x) + b_n \sin(\frac{n\pi}{L}x) \right],$$

then

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx,$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L}x) dx, \quad n \ge 1,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi}{L}x) dx, \quad n \ge 1.$$

• If

$$u(x,y) = \sum_{n=1}^{\infty} \beta_n \sin(\frac{n\pi}{a}x) \sinh(\frac{n\pi}{a}y),$$

then

$$\beta_n = \frac{2}{a \sinh(n\pi b/a)} \int_0^a f_2(x) \sin\frac{n\pi}{a} x dx.$$

• If $\Lambda_{mn} = (m\pi/a)^2 + (n\pi/b)^2$ and

$$u(x,y) = \sum_{m,n=1}^{\infty} E_{mn} \sin(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y),$$

then

$$E_{mn} = -\frac{4}{ab\Lambda_{mn}} \int_{0}^{b} \int_{0}^{a} f(x,y) \sin(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y) dx dy.$$

ullet If y_m and y_n are two eigenfunctions corresponding to two different eigenvalues, then

$$\int_{a}^{b} r(x)y_m(x)y_n(x)dx = 0.$$

List of Properties and Identities for Bessel Functions

Let m be a nonnegative integer and ν be a nonnegative real number.

1.
$$J_{-m}(x) = (-1)^m J_m(x)$$
.

2. $J_m(-x) = (-1)^m J_m(x)$. i.e., $J_m(x)$ is an even function when m is even and it is an odd function when m is odd.

3.

$$J_m(0) = \begin{cases} 0 & m > 0 \\ 1 & m = 0. \end{cases}$$

4.
$$\lim_{x \to 0^+} Y_m(x) = -\infty$$
.

5.
$$xJ'_{\nu}(x) = \nu J_{\nu}(x) - xJ_{\nu+1}(x)$$
.

6.
$$xJ'_{\nu}(x) = -\nu J_{\nu}(x) + xJ_{\nu-1}(x)$$
.

7.
$$J_{\nu-1}(x) - J_{\nu+1}(x) = 2J'_{\nu}(x)$$
.

8.
$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{x} J_{\nu}(x)$$
.

9.
$$\frac{d}{dx} [x^{\nu} J_{\nu}(x)] = x^{\nu} J_{\nu-1}(x).$$

10.
$$\frac{d}{dx} [x^{-\nu} J_{\nu}(x)] = -x^{-\nu} J_{\nu+1}(x).$$

11.
$$\int x^{\nu+1} J_{\nu}(x) dx = x^{\nu+1} J_{\nu+1}(x) + c.$$

12.
$$\int x^{-\nu+1} J_{\nu}(x) dx = -x^{-\nu+1} J_{\nu-1}(x) + c.$$