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[20] 1. Consider the equation

2x2y′′ − xy′ + (1 + x)y = 0

(a) Find two values of r such that there are solutions of the form y(x) =
∑∞

n=0 anx
n+r.

(b) Find the recurrence relation for an in terms of an−1 for both values of r. (You may do
both at the same time by not substituting values for r in the recurrence relation).

(c) For the larger of the two values of r and for a0 = 1 find a1, a2, a3.
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[15] 2. Solve the heat equation
ut(x, t) = uxx(x, t)

for 0 ≤ x ≤ 1 and t ≥ 0 with non-homogeneous boundary conditions

u(0, t) = 1, u(1, t) = 0, ∀t > 0

and initial condition
u(x, 0) = 1 + x.
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[15] 3. Consider the wave equation utt = uxx for x ∈ R, t > 0, with the initial conditions
u(x, 0) = f(x), ut(x, 0) = g(x), where

f(x) =


0 if x ≤ 0,

x if 0 ≤ x ≤ 1,

1 if x ≥ 1

g(x) =


0 if x < 0,

1 if 0 ≤ x ≤ 1,

0 if x > 1.

(a) Solve the solution u(x, t) using d’Alembert’s formula. Simplify it as much as possible.
Hint: draw the graph of f ′(x), where it exists.

(b) Plot u(x, 0), u(x, 1) and u(x, 2) for |x| ≤ 4.
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[15] 4. Solve the equation ( ∂2

∂x2
+

∂2

∂y2

)
u(x, y) = 0

for 0 ≤ x ≤ π and 0 ≤ y ≤ 1 with boundary conditions

u(0, y) = sin(πy), u(π, y) = 0, u(x, 0) = sin3 x, u(x, 1) = 0.

Hint: sin3 x = 3
4
sin x− 1

4
sin(3x).
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[20] 5. Consider the boundary value problem

x2y′′ + xy′ + λy = 0, y′(1) = 0, y′(e) = 0.

(a) Find all values of λ such that this problem has a non-zero solution y(x). For each value
of λ you find give a non-zero solution y(x).

(b) Let yj(x), yk(x) be non-zero solutions corresponding to different values of λ in part (a).
Is there an orthogonality relation satisfied by yj(x) and yk(x), and if so what is it? (This
can be answered without answering part (a)).
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[15] 6. Consider the problem

∆u + u = 0 on the disc 0 < r < 1, 0 ≤ θ ≤ 2π, u(1, θ) = f(θ) on the boundary.

(a) Use the separation of variables method to find all solutions of the form u(r, θ) = R(r)Θ(θ),
which are finite at the origin. Show your work.

(b) Find the solution if f(θ) = sin 6θ.
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