THIS EXAMINATION CONSISTS OF 8 QUESTIONS. PLEASE CHECK TO ENSURE THAT THIS PAPER IS COMPLETE.

THE UNIVERSITY OF BRITISH COLUMBIA Term 2 Examinations - April 2005

MATHEMATICS 227 Section 201

TIME: 2.5 Hours

INSTRUCTIONS: No notes, books or calculators are to be used. No credit will be given for the correct answer without the (correct) accompanying work,

- 1. Let z=f(x,y) be a C^3 function on an open set $D\subset R^2$, and assume that all partial derivatives of orders one, two and three equal zero at a point $(a,b)\in D$ except for $\frac{\partial^3 z}{\partial x \partial y^2}$ (a,b)=6. Determine whether (a,b) is a local maximum, a local minimum or a saddle point, and give reasons for your answer. Remark: Your reasons do not need to be completely rigorous but they should be at least heuristically convincing. [10%]
- 2. Use the method of Lagrange multipliers (no credit will be given for any other method) to find the points on the ellipse $x^2+4y^2=4$ which are closest to the point (1,0). Hint: Minimize the **square** of the distance from a point on the ellipse to (1,0), and be careful to find all four solutions to the equations specified by the method of Lagrange multipliers. [15%]
- 3. Use the change of variable x=u/v and y=v to evaluate the double integral $\iint_D y dx dy$ where DCR² is the region specified by the inequalities y≤3, y≥x and 1≤xy≤4. [15%]

- 4. Let $F=(e^x\cos(\pi y^2)+ay-1)$, by $e^x\sin(\pi y^2)+x+y)$ be a vector field in \mathbb{R}^2 , where a and b are constants.
 - (a) Find values of a and b such that F is conservative, [5%]
 - (b) With the values of a and b determined in part (a) evaluate the vector line integral \int F-dr taken over any smooth curve starting at (0,0) and ending at (1,1). [5%]
- 5. Find the surface area of the part of the paraboloid $z=2-x^2-y^2$ lying above the xy-plane. [10%]
- 6. Let $F = \frac{r}{\|r\|^3}$ be a vector field in \mathbb{R}^3 , where r = (x,y,z). If $D \subset \mathbb{R}^3$ is an open set

containing the origin with a smooth boundary aD, then it was shown in class that the Divergence or Gauss's Theorem does not apply directly for

F, D and aD. That is, $\iint_{\partial D} \mathbf{F} \cdot d\mathbf{S} \neq \iiint_{D} \operatorname{div}(\mathbf{F}) dV$, where the triple integral

must be interpreted as an improper triple integral since ${\bf F}$ is not defined at the origin.

(a) Let $G = \Gamma$ with D as above. Does the Divergence Theorem apply $||\mathbf{r}||^2$

directly for **G**, D and **a**D? More precisely, is $\iint_{aD} \mathbf{G} \cdot d\mathbf{S} = \iiint_{D} div(\mathbf{G})dV$?

Here, as above, the triple integral must be interpreted as an improper triple integral since **G** is not defined at the origin. Give precise reasons for your answer. [10%]

- (b) Verify that your answer to part (a) is correct in the special case where $D=\{(x,y,z):x^2+y^2+z^2<a^2\}$. [5%]
- 7. Verify that Stokes's Theorem is true in the special case of the vector field $F=(y,xz,x^2)$ over the triangle with vertices at (1,0,0), (0,1,0) and (0,0,1). [15%]

8. Let $\omega = \omega_{(x,y)} = xydx$ be a 1-form on \mathbb{R}^2 . According to the discussion in your textbook, the exterior derivative or differential of ω is a 2-form on \mathbb{R}^2 defined by the formula $d\omega = d\omega_{(x,y)} = d(xy) \wedge dx = (ydx + xdy) \wedge dx = xdy \wedge dx = -xdx \wedge dy$. At a point (x,y) $d\omega$ operates on pairs of vectors in \mathbb{R}^2 . For example, at the point (x,y)=(2,1),

 $d\omega_{(2,1)}(\begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}) = -2dx \wedge dy(\begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}) = -2det \begin{bmatrix} 2\\3\\1 \end{bmatrix} = -2(2) = -4. \text{ The purpose}$

of this problem is to ask you to give a more geometric definition of the exterior derivative motivated by the generalized Stokes's Theorem. In order to keep everything very concrete, give a geometric definition of

 $d\omega_{(2,1)}(\begin{bmatrix}2\\3\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix})$ involving a limit as $h\to 0$ and an integral of ω over a

certain closed curve C_h in \mathbb{R}^2 . Then verify by use of your definition that $d\omega_{(2,1)}(\begin{bmatrix}2\\3\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix})=-4$. Your discussion should be accompanied by a picture showing all the key aspects of your solution. [10%]