The University of British Columbia

Final Examinations—December 2010

Mathematics 226

Advanced Calculus I (Professor Loewen)

Closed book examination.

Time: 2.5 hours

Notes, books, and calculators are not allowed. Write your answers in the booklet provided. Start each solution on a separate page.

SHOW ALL YOUR WORK!

- [10] **1.** The plane P passes through the points A(1, 1, 0), B(0, 1, 1), and C(1, 3, 1).
 - (a) Find an equation for P.
 - (b) Show how to split the given vector $\mathbf{F} = (-4, 5, -7)$ as

$$\mathbf{F} = \mathbf{u} + \mathbf{w}$$

where \mathbf{u} is normal to the plane P and \mathbf{w} is perpendicular to \mathbf{u} .

[8] 2. Riverboat Slim earns his living as a calculus shark on the paddlewheelers of the Mississippi. An undercover cop once learned Slim's trick for finding the tangent plane for any surface of the form

$$Ax^2 + By^2 + Cz^2 = K.$$
(*)

"If (x_0, y_0, z_0) is on that surface and I need the tangent plane right there", Slim confided, "I just rewrite (*) but change x^2 to x_0x , change y^2 to y_0y , and so on." The cop got the hint:

$$Ax_0x + By_0y + Cz_0z = K.$$
 (**)

- (a) Justify Slim's method.
- (b) Generalize Slim's method to produce the tangent hyperplane at $\mathbf{a} = (a_1, a_2, \dots, a_n)$ for the (n-1)-dimensional hypersurface in \mathbb{R}^n defined by

$$c_1 x_1^p + c_2 x_2^p + \dots + c_n x_n^p = K.$$
 (†)

(Here $K \in \mathbb{R}$, $\mathbf{c} \in \mathbb{R}^n$, and p > 1 are given constants; point **a** lies on the surface.) Your goal is an equation named (\ddagger) that is related to (\ddagger) in the same way that Slim's equation (**) is related to (*).

[12] 3. (a) Use Lagrange Multipliers to minimize $f(x, y, z) = x^2 + y^2$ subject to the simultaneous constraints

x + 2y + 3z = 6 and x - y - 3z = -1.

[A correct solution that does not use Lagrange Multipliers will earn some partial credit.]

(b) Discuss the problem produced by changing "Minimize" to "Maximize" in part (a).

This examination has 9 questions on 3 pages.

[10] **4.** Evaluate
$$I = \int_0^1 \int_y^1 x^2 \sin(\pi xy) \, dx \, dy.$$

[15] 5. Near Saddleback Pass, the elevation z is related to the map coordinates (x, y) by

$$z = f(x, y) \stackrel{\text{def}}{=} z_0 - \frac{x^2}{4} + \frac{y^2}{8}$$

We have volunteered to build a trail from the point A, where x = 1 and y = 0, to the mountain pass at B, where x = 0 and y = 0. Our instructions specify that

- (i) the trail must start out in the direction of increasing y, and
- (ii) hikers on the trail must not face a slope larger than 1/4.
- (a) Sketch a contour map showing level curves of f near the mountain pass. Make a sketch that is large enough and neat enough to support the additions described below.
- (b) If we choose a slope of exactly 1/4 to meet rule (ii), in what direction does the trail leave point A? Show this direction on your map from (a).
- (c) If an extreme runner sprints uphill along our trail, maintaining a speed of ||v|| = 2, what will be his/her three-dimensional velocity vector v at the point A? [Assume all coordinates are measured in meters and the given speed is in meters per second.]
- (d) Near the pass at *B*, the ground is almost level, so *rule (ii)* is satisfied for motion in any direction at all. Find all points where this is true, and show them on your map from (a).
- [12] 6. (a) Write the precise logical definition of the statement below:

$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L. \tag{(*)}$$

(b) If the following limit exists, evaluate it and prove in detail that the definition in part (a) holds. Otherwise, prove in detail that existence fails.

$$\lim_{(x,y)\to(0,0)}\frac{2x^2+x^2y-y^2x+2y^2}{x^2+y^2}.$$

(c) Apply the instructions from part (b) to

$$\lim_{(x,y)\to(0,1)}\frac{x^2y^2-2x^2y+x^2}{\left(x^2+y^2-2y+1\right)^2}.$$

- [13] 7. All parts of this question concern the function $f(x,y) = y^2 y \sin\left(\frac{\pi}{2}x\right)$ and the related set $C \stackrel{\text{def}}{=} \{(x,y) : f(x,y) = 0\}.$
 - (a) Make a good sketch, with labels, of the part of C where $-1 \le x \le 3$.
 - (b) Let Q(x, y) denote the best quadratic approximation for f(x, y) near the point (1, 1).
 - (i) Write a formula for Q(x, y).
 - (ii) The equation Q(x, y) = 0 provides an ellipse that approximates the shape of C near (1, 1). Write the equation for this ellipse in the form

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

and sketch it on the figure produced in part (a).

- (c) Now, instead, let Q(x, y) denote the best quadratic approximation for f(x, y) near (2, 0).
 - (i) Write a formula for Q(x, y).
 - (ii) Discuss the approximation for C near (2, 0) provided by the equation Q(x, y) = 0.

[16] 8. All parts of this question refer to $J = \int_{-4}^{4} \int_{9}^{25-x^2} \int_{-\sqrt{25-x^2-z}}^{\sqrt{25-x^2-z}} f(x,y,z) \, dy \, dz \, dx.$

- (a) Reiterate J in all possible orders.
- (b) Evaluate J when $f(x, y, z) = xze^y$.
- (c) Evaluate J when $f(x, y, z) = \cos(\pi [x^2 + y^2])$.

[4] 9. Prove that for any 26 real numbers x_1, x_2, \ldots, x_{26} ,

$$(x_1 + x_2 + \ldots + x_{26})^2 \le 26 (x_1^2 + x_2^2 + \ldots + x_{26}^2).$$

(Any logically correct and clearly justified method earns full marks. The question's point value suggests that an easy method exists.)