
Math 226-Final Exam Name:

1. (8 points) Compute the following limits or explain why they do not exist.

(a) lim
(x,y)→(0,0)

xy
x2 + y2 .

(b) lim
(x,y)→(0,0)

|y|x.

(c) lim
(x,y)→(−1,1)

x2 +2xy2 + y4

1+ y4 .

(d) lim
(x,y)→(0,0)

sinxy
x2 + y2 .
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2. (12 points) Suppose that a planet moves around the sun in a circular orbit
of radius r > 0 with the sun at the center. By Kepler’s third law, the period T of
the orbit (i.e., the length of a year on the planet) is given by

T 2 = αr3

where α is a positive constant.

(a) Using Kepler’s second law, show that the speed of the planet is constant.
(Hint: As explained in class, Kepler’s second law states that the orbit sweeps
out equal area in equal times.)

(b) Show that the acceleration, ~a =~̈r, of the planet is given by

~a = C
~r
r3

for some constant C depending on α. Determine C in terms of α.
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3. (15 points) Let f (x,y) = xy(5x+ y−15).

(a) Find all critical points and classify them as local minima, local maxima
or saddle points.

(b) Does f have any global minima or maxima on R2. If it does, compute
them.

(c) Does f have any global minima or maxima on {(x,y) ∈R2 |x≥ 0,y≥ 0}. If
it does, compute them.
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4. (10 points) Let z = f (x,y) and set x = 3s+2t,y = s+2t. Find the values of the
constants a,b and c such that

a
∂ 2z
∂x2 +b

∂ 2z
∂x∂y

+ c
∂ 2z
∂y2 =

∂ 2z
∂ s2 +

∂ 2z
∂ t2 .
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5. (15 points) Let (a1, . . . ,an)∈Rn and let f : Rn→R be the linear function given
by

f (x1, . . . ,xn) =
n

∑
i=1

aixi.

(a) Compute the minimum and maximum values of f on the ball of radius r
centered at the origin in Rn.

(b) Now compute the minimum and maximum values of f on the ball of
radius r centered at a point~y = (y1, . . . ,yn) ∈ Rn.

(c) Now let g : R3→R be the function given by g(x,y,z) = 5x+3y+2z. Compute
the minimum and maximum values of g on the ball of radius 5 centered at the
point (1,1,1).
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6. (20 points) Let

f (x,y) =

{
x2y

x2+y2 (x,y) 6= (0,0);

0 else.

(a) Use the definition of partial derivatives to compute
∂ f
∂x

and
∂ f
∂y

at (0,0).

(b) Let a be a non-zero constant and let ~x(t) = (t,at). Show that f ◦~x : R→ R
is differentiable and compute D( f ◦~x)(0).

(c) Now compute D f (0,0)◦D~x(0).

(d) Is f differentiable at (0,0)?

6



Math 226-Final Exam Name:

7. (20 points) Suppose f : R2→ R2 is a function.

(a) State the definition of

lim
(x,y)→(0,0)

f (x,y).

(b) State the definition of the derivative D f of f at (0,0).
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