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1. (10 points) Let W denote the subspace of R4 spanned by the set

{(1,1,0,0),(1,0,1,0),(0,1,0,1),(0,0,1,1)}.
Find an orthogonal basis for W .
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2. (10 points) Let X be a subspace of Rn. Show that there exists a linear
transformation T : Rn → Rn such that the range of T is exactly X .
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3. (15 points) Let T be the matrix

T =

2 0 0
2 6 0
3 2 1

 .

(a) Find all real eigenvalues for T .

(b) Say whether T is diagonalizable or not.

(c) If T is diagonalizable, find an invertible matrix P such that P−1T P is
diagonal.
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4. (10 points) Is the matrix

T =

2 0 0
2 6 0
3 2 1


from the previous problem invertible? If so compute its inverse.
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5. (10 points) Let T : R4 → R3 be the linear transformation with matrix 1 2 3 4
5 6 7 8

11 14 17 20

 .

Find a basis for the null-space of T . Then find a basis for the range of T .
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6. (10 points) Determine whether S = {(1,1,1,1),(1,2,3,2),(2,5,6,4),(2,6,8,5)}
is a linearly independent subset of R4. If not, write one of the elements of S as
a linear combination of the others.
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7. (10 points) Suppose

A =
(

a b
c d

)
is a real 2×2 matrix whose trace a +d is 1 and whose determinant is 0. Show
that A2 = A.
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8. (10 points) Let n be a positive integer. For each integer i ∈ [1,n], let pi :
Rn →Rn−1 denote the linear map pi(x1, . . . ,xn) = (x1, . . . ,xi−1,xi+1, . . . ,xn). Suppose
W ⊂Rn is a proper subspace. Show that there is an integer i such that the map
πi : W → Rn−1 given by w 7→ pi(w) is injective. (Recall that a proper subspace of
Rn is a subspace which is not all of Rn.)
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9. (15 points) Let V be a vector space over a field F and let k be a positive
integer. A flag in V is a sequence

V0 ⊂V1 ⊂ ·· · ⊂Vk

of subspaces of V such that, for each integer i ∈ [0,k−1], Vi is a proper subspace
of Vi+1. The integer k is called the length of the flag. For example, if V = R3,
then

{0} ⊂ 〈{(1,0,0),(1,2,0)}〉 ⊂V
is a flag.

(a) Write down a flag of length n in the vector space Fn.

(b) Suppose that f : V →W is an injective linear map of F vector spaces. And
V0 ⊂V1 ⊂ ·· · ⊂Vk is a flag in V . Show that f (V0)⊂ f (V1)⊂ ·· · ⊂ f (Vk) is a flag in
W .

(c) Show that the the biggest possible length of a flag in F2 is 2.
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