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Final Exam
April 21, 2008, 15:30–18:00

No books. No notes. No calculators. No electronic devices of any kind.

Name (block letters)

Student Number

Signature

1 2 3 4 5 6 7 8 9 10 total/65

This exam has 10 problems. The first 9 problems are common to all three
sections, the last problem is section-specific.



Math 221, Section 202, Final Exam Page 2 of 20

Problem 1. (5 points)
Solve the following linear system. Your answer will depend on k.

x1 + x2 − 2x3 + x4 = 1

2x1 + 2x2 − 3x3 + x4 = 2

3x1 + 3x2 − 4x3 + x4 = k
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Problem 2. (5 points)
Let the matrix A be

A =


1 0 −1 0
0 1 0 t
0 3 1 t
1 0 −1 t

 .

Find the inverse of A if possible. Your answer will depend on t.



Math 221, Section 202, Final Exam Page 5 of 20



Math 221, Section 202, Final Exam Page 6 of 20

Problem 3. (5 points)
Let u = (1, 2,−1), v = (−1, 0, 1), w = (2, 3,−2) be three vectors in R3. Let
U = span{u, v, w} be the subspace of R3 spanned by u, v, w.

(a) Find the dimension of U .

(b) Find conditions on a, b, c such that the vector (a, b, c) is in U .
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Problem 4. (5 points)

Let L : R2 → R2 defined by L

([
x
y

])
=

[
x

y − x

]
. Let T =

{[
1
0

]
,

[
−2
1

]}
be a basis

of R2.
(a) Find the representation of L with respect to the basis T .

(b) Let v be a vector in R2 such that [L(v)]
T

=

[
−1
−4

]
. Find v.
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Problem 5. (6 points)
Let L : R3 → R3 be a linear transformation for which we know that

L

1
0
0

 =

1
0
1

 , L

0
1
0

 =

0
4
2

 , L

 1
−1
1

 =

 1
−10
−4

 .

(a) What is L

 2
0
−3

?

(b) Find the matrix A of L with respect to the standard basis.

(c) Find det(A).
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Problem 6. (6 points)
Consider the homogeneous system A~x = 0. Suppose that the Echelon form of A is
given by

A1 =

 1 0 −1 2
0 0 0 0
0 0 0 0


(a) What is rank of A?

(b) Write down a basis for the solution space of the system A~x = 0.

(c) Construct an orthonormal basis for the solution space of the system A~x = 0.
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Problem 7. (5 points)
Compute the determinant of the matrix

0 3 0 2
1 0 t 0
1 0 0 1
0 2 3 0


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Problem 8. (10 points)
For each of the linear maps R2 → R2, find a basis of R2 consisting of eigenvectors
of the linear map, or explain why this is not possible.

(a) The dilation D : R2 → R2 given by D(u) = −3u for all u ∈ R2.

(b) The rotation R : R2 → R2, clockwise by an angle of 90◦.

(c) The reflection S : R2 → R2 across the line x = y.

(d) The map T = S ◦R, (S from (c), R from (b)).

(e) The map B whose matrix is given by(
1 2
0 1

)
.
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Problem 9. (9 points)

Suppose ~vn =

xn

yn

zn

 is the state vector of a dynamical system at time n. Suppose

the time dependence of the dynamical system is given by the equations

xn+1 = xn − yn + zn

yn+1 = −xn + 3yn − zn

zn+1 = −xn + 3yn − zn

(a) Find all state vectors that do not change in time (these are vectors such that
~vn+1 = ~vn, for all n).

(b) Given that ~v0 =

1
0
1

, find ~v100.

(c) Given that ~v1 =

0
2
2

 find all possible values for ~v0.
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Problem 10. (9 points)
Consider the continuous dynamical system x′(t) = A x(t), where A is the matrix

A =

(
−5 4
−4 5

)
(a) Write down the general solution.

(b) Sketch the phase portrait.

(c) Find conditions on the state vector in the first quadrant, which prevent it from
growing beyond all bounds.
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