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ory aid devices, other than those authorized by the examiners.
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examination material from the examination room without permis-
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Part A - Short Answer Questions, 1 mark each

A1: Calculate the projection of the vector [3, 1, 5] onto the vector [2, 2, 4].

A2: Find the area of the triangle ABC in the plane, where A = (3, 2), B = (1, 3) and
C = (2, 5).

A3: Find the eigenvalues of the 2 × 2 matrix below. It is not necessary to find the corre-
sponding eigenvectors.[

1 4
3 2

]

A4: Let A be a 5× 5 matrix with det(A) = 10. What is det(A−1)?

Questions A5-A6 below involve the vectors

u = [1, 1, a] and v = [1, 2, 3]

For each question A5-A6 below justify your answer with a short computation or a short
justification in words. Note that the vector u has a constant a in the last component.

A5: For what value or values of a (if any) are u and v perpendicular?

A6: For what value or values of a (if any) are u and v parallel?
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A7: What is the result of the following MATLAB commands?

A = [1 2 3 4; 1 1 1 1; 9 8 7 6];

A(:,3)

A8: Find all solutions (x, y, z) to the linear system

x + y + z = 5
2x + 2y = 6

2y + 4z = 8
.

For questions A9 and A10 below, consider the homogeneous system of equations represented
by this augmented matrix in reduced row echelon form:

1 3 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 .

A9: What is the rank of the augmented matrix above?

A10: Write a parametric form for all solutions to the system above.

A11: Solve for the loop currents i1 and i2
in the circuit to the right. 1⌦

3⌦2⌦

9V 14Vi1 i2

Find the augmented matrix for the circuit

1
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A12: Find the distance from the point (1, 2) to the line x + y = 0 in the plane.

A13: Calculate the determinant of this matrix:
1 0 0 1
10 0 3 10
7 1 5 9
−1 0 0 1

 .

A14: Find the area of the parallelogram with vertices at (2,−2), (3, 1), (5, 6), and (4, 3).

A15: Consider the line L passing through the point P = [3, 2, 2] and which is perpendicular
to the plane containing the points A = [1, 0, 1], B = [0, 1, 1], and C = [−1, 0, 1]. Give
a parametric equation for L.

A16: Consider the matrix representation A of a linear transformation T : R5 → R3. Circle
all correct answers below:

(a) A is invertible.

(b) A has three rows.

(c) A has three columns.

(d) T (x) = 0 for some x 6= 0.

(e) A = AT .

A17: Consider a linear system with 7 equations for 8 unknowns. Circle all possible types
of solution sets that could result:

(a) The system has no solutions.

(b) The system has a unique solution.

(c) The system has exactly 8 distinct solutions.

(d) The system has a one-parameter family of solutions.

(e) The system has a two-parameter family of solutions.
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A18: Find a constant a so that the following set of vectors is linearly dependent:

{[a, 0, 1], [1, 2, 1], [4, 1, 3]}.

A19: Find the matrix of the linear transformation T : R3 → R3 given by

T (v) = v × (1, 0, 0).

Here, × denotes the cross product.

A20: If A is a matrix with 5 rows and 4 columns such that the set of solutions to the
homogeneous system Ax = 0 has 2 parameters, what is the rank of A?

A21: Consider the two perpendicular lines through the origin given below:

L1 : x + 2y = 0

L2 : x− y/2 = 0

Find the matrix for the composition of linear transformations: projection onto L1

followed by projection onto L2.

A22: Let

A =

[
1 3
−2 1

]
and B =

[
3 4
2 3

]
.

Compute ABAT .
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A23: Find the inverse of the matrix

A =

2 1 3
1 0 1
0 1 2

 .

A24: A 3 × 3 matrix A with real entries has been typed into MATLAB. The result of the
command [V D] = eig(A) is (after some slight formatting changes to make it fit better
in the exam):

V = 0.8165 + 0.0000i 0.8165 + 0.0000i 0.5774 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i 0.5774 + 0.0000i

0.4082 - 0.4082i 0.4082 + 0.4082i 0.5774 + 0.0000i

D = 1.0000 + 2.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 1.0000 - 2.0000i 0.0000 + 0.0000i

0.0000 + 0.0000i 0.0000 + 0.0000i -1.0000 + 0.0000i

Circle all true statements below:

(a) A has no real eigenvalues.

(b) All eigenvalues of A have negative real parts.

(c) The eigenvectors of A are a basis for R3.

(d) Eigenvectors of A associated to distinct complex eigenvalues are linearly indepen-
dent.

(e) [1, 1, 1]T is an eigenvector of A.
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Questions A25 and A26 concern the circuits above. In the left diagram, I is the current
through the current source and E is the voltage across it, to be determined.

A25: For the left circuit above with two voltage sources and one current source write the
one linear equation that matches the loop currents to the current source.

A26: The left circuit above has solution

i1 = −2I/3 + V1/3− V2/3

i2 = I/3 + V1/3− V2/3

E = 11I/3 + 2V1/3 + V2/3

with all currents in Amps and potentials in Volts. Use this information to derive a
differential equation system for I(t), V1(t), and V2(t) in the right hand circuit where
the two capacitors are 2 Farads and the inductor is 0.1 Henry.

A27: The set of solutions of the homogeneous system Ax = 0 can be written in parametric
form

x = [0, 1, 0, 1]t + [7, 0, 1, 0]s.

If A is a 3× 4 matrix, what is the reduced row echelon form of A?
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A28: Compute det(A), where A is the 3× 3 matrix with complex entries given below. Your
answer should be in the form a + ib.

A =

 2 + i 3− i 0
3 + i 2 + i 0

1 1 i



A29: The matrix below represents rotation in 3D about a line through the origin. 1/2 −1/
√

2 1/2

1/
√

2 0 −1/
√

2

1/2 1/
√

2 1/2


Find a vector in the direction of the line of rotation.

A30: A solution to the two component differential equation system y′ = Ay is

y(t) =

[
i
1

]
e2t(cos t + i sin t).

The 2× 2 matrix A has real entries. What is A?
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Part B - Long Answer Questions, 5 marks each

B1: Consider the lines

L1 : [0, 2, 1] + s[−1, 2, 2]

L2 : [−1, 0, 3] + t[−2, 1, 1]

(a) [1 mark] Write two distinct points on L1.

(b) [1] Write a vector that points in the direction parallel to L1.

(c) [2] Do the lines L1 and L2 intersect? If so, find the intersection point. If not,
explain.

(d) [1] Find a vector perpendicular to both L1 and L2.
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B2: In the system below, x, y, and z are variables, and a and b are constants.

x + y + z = 5
x + z = 1
ax + z = b

(a) [1 mark] Write the system as an augmented matrix.

(b) [2] Bring the augmented matrix to row echelon form.

(c) [1] For what value or values of a and b (if any) does the system have no solutions?

(d) [1] For what value or values of a and b (if any) does the system have an infinite
number of solutions?
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B3: Consider the 3× 3 matrix

A =

 2 2 −1
0 0 1
0 −4 5

 .

(a) [1 mark] Find an eigenvector of A corresponding to the eigenvalue λ = 1.

(b) [2] Find all other eigenvalues of A.

(c) [2] Find a basis of eigenvectors of A.
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B4: Suppose in the year 2020, 50 million people live in cities and 50 million in the suburbs.
Every year, 10% of city residents move to the suburbs and 20% of the residents of the
suburbs move to cities.

(a) [1 mark] Write down the 2 × 2 probability transition matrix P for this problem,
using the ordering (1) city and (2) suburbs.

(b) [1] What fraction of residents will be living in cities in 2022?

(c) [2] Find the eigenvalues of P and a basis of eigenvectors.

(d) [1] Assuming the overall population does not change (i.e., remains at 100 million),
how many people will be living in the suburbs far in the future?
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B5: Consider z = −1/2 + i
√

3/2. Recall that tan−1
√

3 = π/3.

(a) [1] Mark the approximate location of z in a sketch of the complex plane.

(b) [1] Compute |z|.
(c) [1] Write z in polar form. That is, find a real number r > 0 and 0 ≤ θ < 2π such

that z = reiθ.

(d) [2] Find real numbers a and b such that (−1/2 + i
√

3/2)23 = a + bi. Simplify your
answer.
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B6: Consider the three-component differential equation x′ = Ax. The 3 × 3 matrix A
has real entries. It has an eigenvalue λ1 = −2 and an eigenvalue λ2 = −1 + i with
corresponding eigenvectors

v1 =

 1
1
1

 and v2 =

 0
1 + i

1

 .

(a) [2 marks] Write the general solution to the differential equation.

(b) [2] Write the solution of the differential equation with initial data x(0) = [1, 2, 3]T .Your
solution must be in real form, that is is cannot involve complex numbers or com-
plex exponentials.

(c) [1] Describe all initial conditions for which the solution x(t) exhibits oscillatory
behaviour. Justify your answer briefly.


