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Part A - Short Answer Questions, 1 mark each

A1: Evaluate (1, 2,−1)× (4,−2, 1).

A2: A linear system of three equations in four unknowns has

(a) always a unique solution.

(b) either a unique solution or no solutions.

(c) either a unique solution or an infinite number of solutions.

(d) either no solutions or an infinite number of solutions.

A3: An electrical network with 2 voltage sources, 3 current sources, 5 resistors (all given)
arranged in 6 elementary loops can be described using the loop current technique
described in the notes and computer labs as a linear system with the following number
of unknowns:

(a) 6

(b) 8

(c) 9

(d) 11

A4: An electrical network with 2 capacitors, 3 inductors, 5 resistors (all given) arranged in
6 elementary loops can be described as a system of the following number of differential
equations:

(a) 5

(b) 6

(c) 8

(d) 16

A5: Find the determinant of the matrix  2 −1 6
0 0 2
0 1 8



A6: For what values of λ does the matrix[
3 + λ 2

2 3 + λ

]
not have an inverse?
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A7: Consider the circuit above. Write a linear equation for the loop currents as shown in
the figure that represent Kirchhoff’s voltage law around the loop that corresponds to
loop current i1.

A8: Find the inverse of the matrix [
1 1
0 1

]

A9: Are a = (1, 2, 4) and b = (6,−2, 3) orthogonal to each other? Justify briefly.

A10: What is the area of the parallelogram with sides given by the vectors a = (1, 2) and
b = (2, 1)?

A11: Do the vectors (1, 1, 1), (1, 2, 3), (1,−7, 0) form a basis of R3? Justify briefly.

A12: You are solving a linear system of equations. You enter the system and right hand
sides as an augmented matrix. The reduced row echelon form of this augmented matrix
is given below:  1 2 0

0 0 1
0 0 0

∣∣∣∣∣∣
2
5
0


Find all the solutions to the system (if any).
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A13: What is the matrix representation of the 2D projection onto the x axis?

A14: The variables x and y are defined by the MATLAB commands

x = [1 0 2];

y = [3 2 1];

which of the following MATLAB commands will result in an error message?

(a) dot(x,y)

(b) cross(x,y)

(c) x.*y

(d) x*y

A15: The variable A is defined by the MATLAB command

A=[1 2 3; 4 5 6];

What is the result of the command A(2,1)?

A16: A matrix A is entered into MATLAB. The eigenanalysis of A is performed using the
command [T D] = eig(A) which gives the following results:

T =

0.7071 0.5257

0.7071 0.8507

D =

2.0000 0

0 3.0000

Using these results, determine A5[1, 1]T :

(a) [32, 32]T

(b) [32, 243]T

(c) [1, 1]T

(d) [243, 243]T

A17: The linear transformation T : R3 → R3 is given by

T (x, y, z) = (2x + 2y, 3x + 3z, x + y + z).

Write the matrix representation of T .
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A18: Write down the matrix A that will result from the following lines of MATLAB code:

A=zeros(3,3);

c=[1 2 3];

A(3,:) = -c;

for i=1:2

A(i,i+1) = 1;

end

For questions A19-A23 below, u and z are the complex numbers given below:

u = i + 1

z = 2− i

A19: Evaluate u + 2z. Your answer should be in the form a + ib where a and b are real
numbers.

A20: Evaluate |z|.

A21: What is the polar representation of u?

A22: Evaluate uz. Put your answer in the form a + ib where a and b are real numbers.

A23: Evaluate u/z. Put your answer in the form a + ib where a and b are real numbers.

A24: If a = (1,−1, 1) and b = (2, 3, 4) find projab.



April 20, 2009 Math 152 Name: Page 6 of 12 pages

A25: If a = (1,−1, 1) find the matrix representation of proja.

A26. Find all roots z of
z3 − 1 = 0

Put all your answers in the form z = a + ib where a and b are real numbers.

A27: Consider the matrix which represents 2D reflection through the line y = 10x. What
are the eigenvalues of this matrix?

A28: A is a 3× 4 matrix. The entries of the first two rows are filled with random integers
from 1 to 1000. The third row is the sum of the first two rows. What is the most likely
value for the rank of A? Justify briefly.

A29: Write down the values of x0 and x1 that will result from the following lines of MAT-
LAB code:

x0=1;

x1=1;

for i=1:3

xnew = x0+x1;

x0=x1;

x1=xnew;

end

A30: T : R3 → R4 is a linear transformation such that x = 0 is the only vector x such that
Tx = 0. What is the reduced row echelon form of the matrix representation of T?
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Part B - Long Answer Questions, 5 marks each

B1: Three friends, Hiro, Wan and Bob together have $16. Hiro has twice as much money
as Bob and Wan has $1 more than Hiro.

(a) [2 marks] Let x = (x1, x2, x3)
T be the vector of unknowns, where x1 is the amount

of money that Hiro has, x2 the amount that Wan has, x3 the amount that Bob
has. Describe the information above as a linear system in the form

Ax = b

(write A and b with specific values).

(b) [1] Write the system you found above in augmented matrix form.

(c) [2] Solve the system above using Gaussian elimination on the augmented matrix.
How much money do each of the three friends have?
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B2: Let P be the plane defined by
x + 2y + 3z = 1

(a) [2 marks] Consider the intersection of P with a second plane Q defined by

2x− y − z = 0

This intersection is geometrically a line. Find a parametric description of this
line.

(b) [3] Find the point on P closest to the point (2, 0, 0).
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B3: Consider

A =

−2 0 3
−3 1 3
2 0 −1


(a) [2 marks] Find the eigenvalues of A. Hint: -4 is one of the eigenvalues.

(b) [3] Find a basis of eigenvectors of A.
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B4: Consider the differential equation system

dy1

dt
= ay1 − 3y2

dy2

dt
= −3y1 + ay2

where a is a real parameter.

(a) [1 point] Let

y(t) =

[
y1(t)
y2(t)

]
.

Write the matrix A so that the system above is written

dy

dt
= Ay.

(b) [2] Find the eigenvalues and eigenvectors of A when a = 1.

(c) [1] Write the general solution to the differential equation system when a = 1.

(d) [1] For what values of a (if any) do all solutions of the system satisfy y1(t) → 0
and y2(t) → 0 as t →∞?
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B5: Consider the differential equation system

dx

dt
= Ax

where A has eigenvalues λ1 = −1 + i and λ2 = −1− i with corresponding eigenvectors

k1 = [1 + i, 1− i]T , and k2 = [1− i, 1 + i]T

(a) [2 marks] Write the general solution of the DE system.

(b) [3] Find the solution (written in terms of real functions of t) that satisfies initial
conditions x(0) = [1, 2]T .
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B6: The matrix

P =

[
3/4 1/2
1/4 1/2

]
is the transition matrix for a random walk.

(a) [1 mark]. If the random walk starts in the second state, what is the probability
that it will be in the second state after 2 transitions?

(b) [2] Find the equilibrium probability of the random walk represented by P .

(c) [2] Find a different 2× 2 matrix Q that is a transition matrix for a random walk
such that

lim
n→∞

Qn

[
1
0

]
does not exist.

The End


