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7 5

8 4

9 5

Total 65



You do not have to simplify your answers. “Calculator-ready” answers are sufficient.
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1. Determine whether each of the following statements is true or false. If it is true, provide
justification. If it is false, provide a counterexample.

(a) [2 marks] If f is defined on the closed interval [−1, 1], then f attains a global maxi-
mum on that interval.

(b) [2 marks] If f is differentiable everywhere and f(x) = 0 has two solutions, then
f ′(x) = 0 has at least one solution.

(c) [2 marks] f(x) = sinx has infinitely many inflection points.

(d) [2 marks] If f(1) = 2, then f does not have a vertical asymptote at x = 1.
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2. For each of the following short answer questions, underline your final answer.

(a) [2 marks] Find lim
x→2

x4 − 8x

x2 − 4
.

(b) [3 marks] Find lim
x→∞

5x2 + lnx

2x2 + 3x
.

(c) [2 marks] State either the Mean Value Theorem or Rolle’s Theorem.
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3. Let f(x) =
x2

(x− 4)2
.

(a) [1 mark] State the domain of f .

(b) [3 marks] Find all the vertical and horizontal asymptotes of f , if there are any.

(c) [2 marks] Compute f ′(x).

(d) [3 marks] Find the intervals where f is increasing and the intervals where it is
decreasing.
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(e) [2 marks] Compute f ′′(x).

(f) [3 marks] Find the intervals where f is concave up and the intervals where it is
concave down.

(g) [3 marks] Make a large sketch of the graph of the function.

6



4. [6 marks] A farmer wants to enclose a rectangular pasture of 500 square metres. Three
sides of the pasture will be enclosed with cedar fencing at a cost of $10 per metre. The
remaining side is to be enclosed with a stone wall at a cost of $15 per metre. What should
the dimensions of the field be to minimize the cost of the enclosure?
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5. [7 marks] Find the coordinates of the point P on the semicircle y =
√

1− x2 of radius
1 (pictured below) for which the right triangle ABP has maximal area.

 

y 

x 

P 

B A 
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6. [6 marks] At noon, ship A is 30 kilometres west of ship B. Ship A is sailing east at 20
kilometres per hour and ship B is sailing north at 30 kilometres per hour. How fast is the
distance between the ships changing at 4:00 p.m. on the same day? (You should indicate
in your answer if the distance between the ships is increasing or decreasing.)
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7. A particle moves across the x-y plane following the equation 10x = e2y − e−2y.

(a) [1 mark] Verify algebraically that the particle crosses the point (0, 0).

(b) [4 marks] Suppose we know that when the particle is at the point (0, 0), the rate of
change of its x-coordinate is 4 metres per second. What is the rate of change of its
y-coordinate at that point?
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8. Imagine bushbuck antelopes interacting in a montane forest. Let P denote the probability
that a given antelope is in contact with another antelope. P is modelled by the equation

P = 1− e−πρD2

,

where D is a constant denoting the “spotting distance” of the species, and ρ is a function
denoting the density of antelope in the area.

(a) [2 marks] Suppose ρ′(t) is determined by field observations. Come up with an ex-
pression for the rate of change of the probability that an individual is in contact with
another individual at time t. (Your answer will involve the term ρ′(t).)

(b) [2 marks] Now suppose ρ′(t) = 0 for a period of time from t = a to t = b. Make a
large sketch of the graph of P during that period.
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9. (a) [3 marks] Use a linear approximation to estimate ln(0.9).

(b) [1 mark] Is your answer in part (a) an overestimate, an underestimate, or exactly
equal to, the actual value of ln(0.9)? Justify your answer.

(c) [1 mark] In some cases, the linear approximation of a function is equal to the function
itself for all values of x. What is one such function?
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This page may be used for rough work. It will not be marked.
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