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1. Determine whether each of the following statements is true or false. If it is true, provide
justification. If it is false, provide a counterexample.

(a) [2 marks] The graph of f(x) = 1
2

((x+ 3)2 − 2) crosses the x-axis.

(b) [2 marks] If lim
x→1

f(x) = 4, then f(1) = 4.

(c) [2 marks] f(x) =

{
3

x+2
if x < 1√

x if x ≥ 1
is continuous at all real numbers.

(d) [2 marks] If f(x) is differentiable at x = 2, then lim
h→0

f(2 + h)− f(2)

h
= 2.
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2. [5 marks] Find the equations of the two tangent lines to the curve y =
x− 4

x+ 4
that are

parallel to the line x− 2y = 2.
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3. Let f(x) = x6.

(a) [1 mark] What is the derivative of f(x)?

(b) [2 marks] Rewrite f(x) in such a way that you can differentiate it using a different
rule than the Power Rule. Name the rule of differentiation which is applicable, and
then confirm that the derivative calculated using this alternative method is the same
as in part (a).

(c) [3 bonus marks] Can you do the same as in part (b), but with yet another rule?
You will receive one bonus mark for each different differentiation rule you use to
differentiate f(x).
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4. Let f(x) =
√
x− 1 and g(x) = (f ◦ f)(x).

(a) [1 mark] Find a formula for g(x) in terms of x (in other words, your formula should
not use the symbol “f”).

(b) [2 marks] What is the domain of g(x)?

(c) [2 marks] Find the derivative of g(x).
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5. (a) [3 marks] Evaluate the following three quantities: sin
(
5π
3

)
, cos

(
−π

3

)
, tan

(
11π
3

)
.

(b) [3 marks] Find the equation of the line tangent to the curve y =
cosx

sinx
at x =

5π

3
.
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6. Consider the function:

f(x) =
e(x

3)e(2x
2)ex

e3
.

(a) [1 mark] How many solutions are there to the equation f(x) = 0? Justify your
answer.

(b) [2 marks] Find the derivative of f(x).

(c) [2 marks] How many solutions are there to the equation f ′(x) = 0? Justify your
answer.
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7. [4 marks] Find the derivative of the function

f(x) = (x2 + 1)7(x4 + 2)5(x6 + 3)3(x8 + 4).

(There is no need to simplify your answer.)
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8. [4 marks] Let

f(x) =

{
e−x if x < t

2(x+ 1) if x ≥ t

Explain why there exists a number t such that f is continuous.

(Hint: apply the Intermediate Value Theorem to the function e−t − 2(t+ 1).)
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9. [5 marks] Find the derivative of y with respect to x at the point P = (0, π) along the
curve:

sin(x+ y) = xy
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10. (a) [2 marks]Explain what it means for a function to be differentiable at the point x = 2
in terms of limits.

(b) [3 marks] Find constants a and b so that the function

f(x) =

{
x2 − 2x+ 1 if x ≤ 2

ax+ b if x > 2

is differentiable everywhere.
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