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Important

1. Simplify all your answers as much as possible and express answers in terms of fractions or constants
such as

√
e or ln(4) rather than decimals.

2. Show all your work and explain your reasonings clearly!
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5. Additional sheets of paper for calculations are available upon request.



Math 103 Name:

1. Multiple-choice problems
(Full marks for correct answer. No partial marks.)

(a) (6 points) Given the following general terms an, determine whether the corresponding
sequences {an}n≥1 are converging, diverging, monotone (increasing or decreasing) and/or
bounded. Check all boxes that apply. (do not calculate the limit of converging sequences.)

convergent divergent monotone bounded

i.
1

n2
:

ii. (−1)n + 1:

iii. −1 + 2−n:

iv. ln(n):

(b) (4 points) Determine whether the following series converge or diverge. Check appropriate
box. (do not calculate the value of converging series.)

converging diverging

i.

∞∑
n=1

1

n2
:

ii.

∞∑
n=1

−n2

1 + n2
:

iii.

∞∑
n=1

n2

n!
:

iv.

∞∑
n=0

1√
3n+ 4

:

(c) (4 points) Determine whether the following integrals converge or diverge. Check appro-
priate box. (do not calculate the integrals.)

converging diverging

i.

∫ 1

0

1

x3
dx:

ii.

∫ ∞
e

1

x(x+ 1)
dx:

iii.

∫ ∞
1

√
ln(x)

x2
dx:

iv.

∫ ∞
1

√
x3 + 1

x2
dx:
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(d) (4 points) For each graph (i) and (ii) identify the graph (A-D), which depicts its an-
tiderivative A(x) =

∫ x
a f(t) dt and determine a consistent starting point a of the integral.

(i ) (ii )
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Answer: Answer:

a = a =
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(e) (4 points) Plots (A-D) depict probability density functions, pdf ’s, for −∞ < x < ∞ at
the same scale. List all pdf ’s that satisfy the following criteria:
(x̄ denotes the mean and xmed the median)

A B

x

y

1−1
x

y

1−1

C D

x

y

1−1
x

y

1−1

i. x̄ = xmed? Answer:

ii. xmed > x̄? Answer:

iii.

∫ 0

−∞
p(x) dx > 1/2? Answer:

(f) (6 points) Consider the differential equation
dy

dt
= 4t
√
y. Check all solutions in the fol-

lowing list. (Note: different solutions refer to different initial conditions/values.)

true false

i. y(t) = t4 is a solution

ii. y(t) = t4 + 4t2 + 4 is a solution

iii. y(t) = t2 is a solution
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2. Short-answer-problems
(Full marks for correct answer. Work must be shown for partial marks. Simplify your answers.)

(a) (4 points) Write the following in
∑

-notation:

i. 1 + 2 + 9
4 + 16

8 + 25
16 + 36

32 =

ii. 1− 2 + 16− 29 + 216 =

(b) (4 points) Consider the functions Ai(x) and calculate their derivatives A′i(x) = dAi(x)
dx .

i. A1(x) =

∫ x

0
e−y

2
dy, A′1(x) =

ii. A2(x) =

∫ ex

e−x

1

ln y
dy, A′2(x) =

(c) (4 points) Evaluate I =

∫ π

0
f(x)f ′(x) dx using f(0) =

√
2, f(π) = 2π.

(Work must be shown for full marks.)

ANSWER: I =
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3. Calculate the following integrals:
(Work must be shown for full marks. Simplify your answers.)

(a) (3 points) I1 =

∫
sin (
√
x)√

x
dx

ANSWER: I1 =

(b) (3 points) I2 =

∫
y ln(3y) dy

ANSWER: I2 =
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(c) (4 points) I1 =

∫ 2

1

1

x2
cos
(π
x

)
dx

ANSWER: I3 =

(d) (4 points) I2 =

∫ π
4

0

sin3 y

cos2 y
dy

ANSWER: I4 =

Final Exam Page 6 of 13



Math 103 Name:

4. (8 points) Find all x such that the series

∞∑
n=1

(n− 1)2(x2 − 1)n

3n n
converges?

(Work must be shown for full marks.)

ANSWER:
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5. (5 points) In a petri dish with a radius of r = 3 cm scientists placed a bacteria killing agent
along a diameter. They found the density of bacteria, ρ(x), increased with distance x cm from
the diameter according to ρ(x) = kx bacteria/cm2 for some constant k. Determine the total
population size of bacteria, N , in the petri dish.

x

r

diameter

ANSWER: N =
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6. Consider the function y = f(x) = x−
3
2 − 1.

(Work must be shown for full marks.)

(a) (4 points) Calculate the area, A, bounded by the x-axis, y-axis and y = f(x) (shaded area
in figure) or show that it does not exist.

(b) (5 points) Calculate the volume of the solid of revolution, V , obtained by rotating the
above area (shaded area in figure) around the y-axis or show that it does not exist.

0.5 1 1.5

15

10

5

x

y

ANSWER: A = V =
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7. The figure below shows the graph y = f(x) and the diagonal y = x (dashed line).

x

y

5 10

−5

−10

5

10

−5

−10

y = f(x)

A B

Use this plot to answer the following questions:

(a) (2 points) Clearly mark and label all fixed points of the iterated map an+1 = f(an).

(b) (3 points) Determine the stability of each fixed point. (Explain your reasoning.)

(c) (2 points) Use the plot above to draw cobwebs with at least three steps (or until the
trajectory exits the graph) for each of the two initial values a0 = A, and B.
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8. Suppose the Taylor series y =

∞∑
n=0

anx
n solves the differential equation

dy

dx
+ 2y = x2 with the

initial condition y(0) = 4.
(Work must be shown for full marks.)

(a) (6 points) Calculate the first four coefficients a0, a1, a2 and a3.

ANSWER: a0 = a1 = a2 = a3 =

(b) (2 points) Find the recursive relation an = f(an−1) for n ≥ 4.

ANSWER: an =

(c) (optional 2 bonus points – save for last) Find the closed formula an = f(n) for n ≥ 4.

ANSWER: an =
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9. The probability density function (pdf ) for the mortality of a jellyfish (Turritopsis dohrnii),
p(x), at age x is given by

p(x) =
2

π

1

1 + x2
,

for 0 ≤ x <∞.

(a) (2 points) Find the probability, C(x), that a jellyfish dies before reaching the age x.

ANSWER: C(x) =

(b) (2 points) Find the median mortality, xmed.

ANSWER: xmed =

(c) (3 points) Find the mean mortality, x̄.
(Setup and evaluate the improper integral for the mean mortality.)

ANSWER: x̄ =

(d) (1 point) Consider a large colony of Turritopsis dohrnii jellyfish. After how many years
do we expect that half of the animals of the original colony have died?
(Circle correct answer.)

(i) 1 Year (ii) 2 Years (iii) π
2 Years (iv) 2π Years (v) Never

(e) (1 point) The average lifespan of any single jellyfish is arbitrarily long.
(Circle correct answer.)

(i) True (ii) False
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Useful Formulæ

Summation

N∑
k=1

k =
N(N + 1)

2

N∑
k=1

k2 =
N(N + 1)(2N + 1)

6

N∑
k=1

k3 =

(
N(N + 1)

2

)2 N∑
k=0

rk =
1− rN+1

1− r

Trigonometric identities

sin(α+ β) = sinα cosβ + cosα sinβ; for α = β: sin(2α) = 2 sinα cosα

cos(α+ β) = cosα cosβ − sinα sinβ; for α = β: cos(2α) = 2 cos2 α− 1 = cos2 α− sin2 α

sin2 α+ cos2 α = 1 tan2 α+ 1 = sec2 α =
1

cos2 α

Some useful trigonometric values

sin(0) = 0, sin
(π

6

)
=

1

2
, sin

(π
4

)
=

√
2

2
, sin

(π
3

)
=

√
3

2
, sin

(π
2

)
= 1, sin(π) = 0

cos(0) = 1, cos
(π

6

)
=

√
3

2
, cos

(π
4

)
=

√
2

2
, cos

(π
3

)
=

1

2
, cos

(π
2

)
= 0, cos(π) = −1

tan(0) = 0, tan
(π

6

)
=

1√
3
, tan

(π
4

)
= 1, tan

(π
3

)
=
√

3, tan
(π

2

)
= DNE, tan(π) = 0

Derivatives

d

dx
arcsinx =

1√
1− x2

d

dx
arccosx = − 1√

1− x2
d

dx
arctanx =

1

1 + x2
d

dx
tanx = sec2 x
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