Analysis Qualifying Exam (Draft)
(January XX, 2014)

1. (10 points) Prove that the series
2. 2% cos(n’z)
>
n=1

converges pointwise to a continuous function on R.

Solution: On any bounded interval [—R, R], we have

2 2

x* cos(n’x) < R?

n? n?

. 2 . . . . . .
and the series >, % is convergent. Hence the original series is uniformly convergent on any
interval [—R, R], and the summands are continuous, so that the series is pointwise convergent to a
continuous function on [—R, R]. Since R was arbitrary, the limit is continuous on R.

2. (10 points) Use Green’s theorem to evaluate the line integral / F - dr, where F = ei+ e2*Yj and C
c
is the boundary of the rectangle in R? with vertices (0,0), (0,1), (2,1) and (2,0), oriented clockwise.

Solution:

Jo F-dr = — [[,(2¢**T¥ —0)dA, where D is the rectangle as above. (The minus sign is because C
is negatively oriented.) So

2 41 2 1
/ F.dr= —/ / 2e*" MWdydx = —/ 262de/ eldy = —(6200%) (€y|(1)> = —(e" =1)(e—-1).
c o Jo 0 0

3. (10 points) Assume that a function f : R — R is differentiable on [a,b], f(a) = 0, and that there exists
a constant C' > 0 such that |f'(x)| < C|f(x)| for « € [a,b]. Prove that f(z) =0 on [a,b].

Solution: Suppose that f Z 0, then there is a z € (a,b] such that f(x) # 0. Without loss
of generality, we may assume that f(z) > 0. Since f is continuous, we can choose an interval
(a1,b1) C [a,b] such that f(z) > 0 on (a1, b;). Taking a; as small as possible, we may further
assume that a1 = 0 (note that a; > a since f(a) =0.) Let a1 < x <y < by, then by the mean value
theorem

_1f(0)]

~F0)

for some 6 € (z,y). By the assumption on f, we get that |In f(y) —In f(x)| < C for all z,y € (a1,by).
But if « \ a1, then f(z) \, 0, so that In f(z) — oo and |In f(y) — In f(z)| — oo for any fixed y, a
contradiction.

[In f(y) = In f(2)] = [(In £)(6)]

4. (20 points). Evaluate the integral / — dr where 0 < a < 1.
0 1 +x + 332



Solution: We use a branch cut for z%; we take this along the positive real axis and define

pre. ,r,(xez(XQ

where z = re®® and 0 < 0 < 27.
Consider .
z
=
cl+z4+=2

where the keyhole contour C' consists of a large circle Cr of radius R, a small circle C, of radius e
(to avoid the singularity of z* at z = 0) and two lines just above and below the branch cut.
The contribution from Cg is O(R*™2) x 2rR = O(R*™1) — 0 as R — +oc.
The contribution from C. is (substituting z = e?® on C.)

0 €aeia0 ‘0 41
- 2 (0}
/2 T cei® 1 cagmm ¢ dd =0(*") =0

The contribution from just above the branch cut is

R ’Ia
——d I
/6 1tzta20 7

as € — 0 and R — +oo. The contribution from just below the branch cut is

€ a 20
xre 0
726137 — —620“]
rRl4+z+2x

as € — 0 and R — +oo.

Hence

2% .
d 1— 271’041]
/Cl—i-z—l—z2 2= (=)

as € — 0 and R — oo.

But the integrand is equal to

(0%

z
2 In;
(z—ei™)(z—e3")
2m 2qm; ey dax;
so the poles inside C' are at es* with residue “—— and at e’s* with residue “—;

We conclude that

(1_627”111)[:27”,(6 ; n

sin ¢
I =27—
sin(am)

5. (20points) (a) (10points) Use Rouche’s theorem to prove the Fundamental Theorem of Algebra: every
non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity,
exactly n roots.
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(b) (10points) How many zeroes does the function f(z) = 229 + 422e**! — 32® have in the unit disk
{lz| < 1}7?

Solution:
Solution to (a): Let P,(2) = an2"™ + an—12""1 + ... + ag and C = {|z| = R} where R is large. Now
choose
F(2)=2", G(2)=an_ 12"+ .. +ag
On C, |G(2)] < |an—_1||RI" ! + |an_o| R" 2 + ... + |ag| < |an|R™ if R is sufficiently large.
Since F' has n zeroes (counting multiplicity), by Rouche’s theorem, F' + G has exactly n zeroes in
{|]z] < R}.
One should also prove that for |z| = R large there are no zeroes.

Solution to (b): We take
F(z) = 42%e*T G(2) = 2%° — 328

and estimate on the circle |z| =1
IG(2)] < |2 +3 < 4,|F(2)| = 4eRT > 4

A more closer look shows that

G(2)| < [F(2)|

Since the function F(z) has two zeroes in {|z| < 1}, by Rouche’s theorem, f(z) = 220 +42%e*+1 - 328
also has two zeroes in the unit disk {|z| < 1}.

6. (20pints) (a) (10points) Classify all analytic functions having the property that
flz+m+ni)=f(z) (z€C,m,neZ)

where Z denotes the set of integers.

(b) (10points) Let @ = {z € C | 27 < |z| < Im}. Show that there does not exist a sequence {P, ()} of
polynomials in z such that P,(z) — tan(z) uniformly in any compact set in Q.

Solution:

Solution to (a): We claim that f must be constant. In fact, let S = [0,1] x [0,1]. The perioidicity
condition on f gives that f(C) = f(5). Since S is compact and f is continuous (it is holomorphic),
it follows that f is bounded on S, and therefore, f is bounded on C. By Liouville’s Theorem, we
deduce that f is constant.

Solution to (b): We prove it by contradiction. Suppose that there does exist a sequence {P,(z)} of
polynomials in z such that P,(z) — tan(z) uniformly in any compact set in 2. In particular, we
take

C =A{lz| =7}
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By Cauchy residue theorem, .
/ P, (z)dz=0
c

By uniform convergence we then have

/C tan(z)dz = 0

But tan(z) has two poles z = 7, —7 inside {|z| < 7} with residue —1 and hence
/ tan(z)dz = —4mi
c

This reaches a contradiction.
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