Real analysis

1. (10 points) Let \(\mathbf{F} \) be the vector field \((x + e^{y^2}) \mathbf{i} + (y - \sin(z^2)) \mathbf{j} + z^2 \mathbf{k}\), and let \(S \) be the boundary of the region \(V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 4, 0 \leq z \leq 1\} \), oriented so that the normal points outwards. Calculate the flux integral \(\iint_S \mathbf{F} \cdot \mathbf{n} \, dS \).

2. (10 points) Determine if the following assertions are true or false, justifying the answers carefully.
 (a) Let \((a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty} \) be real numbers. If the series \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) both converge, then the series \(\sum_{n=1}^{\infty} a_n b_n \) converges.
 (b) Let \((a_n)_{n=1}^{\infty} \) be real numbers such that \(\sum_{n=1}^{\infty} a_n \) converges absolutely. Then the sequence of functions \(f_N(x) = \sum_{n=1}^{N} a_{x^n} \) defined on \([-1, 1]\) converges uniformly as \(N \to \infty \).
 (c) If the sequence of continuously differentiable functions \(f_n : [0, 1] \to \mathbb{R} \) converges uniformly to \(f \), then \(f \) must be differentiable on all of \([0, 1]\).

3. (10 points) (a) (3 points) Let \(D = \{(x, y) \in \mathbb{R}^2 : xy \in \mathbb{Q}\} \). Prove that both \(D \) and \(\mathbb{R}^2 \setminus D \) are dense in \(\mathbb{R}^2 \). You may use the fact that rationals and irrationals are dense in \(\mathbb{R}^2 \).
 (b) (7 points) Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be the function defined by
 \[
 f(x, y) = \begin{cases}
 x & \text{if } xy \in \mathbb{Q} \\
 y & \text{if } xy \notin \mathbb{Q}
 \end{cases}
 .

 Find all the points \((a, b) \in \mathbb{R}^2 \) such that \(f \) is continuous at \((a, b)\).
Complex analysis

4. (10 points) Compute the contour integral

\[\oint_C \frac{z + 1}{z^3 + 2z^2} \, dz, \]

where \(C \) denotes

(a) (5 points) the circle \(\{ z : |z| = 1 \} \) traversed once in the counterclockwise direction.

(b) (5 points) the circle \(\{ z : |z + 2 - i| = 2 \} \) traversed once in the counterclockwise direction.

5. (10 points) (a) (7 points) Find all singularities of the function

\[f(z) = \frac{z^3}{1 - \cos(z^2)}. \]

Determine the nature of each singularity (i.e., whether it is removable, essential or a pole). For each pole, determine its order.

(b) (3 points) Find all entire functions \(f : \mathbb{C} \to \mathbb{C} \) such that \(f(0) = 3 \) and \(|f(z)| \leq 8 |e^z| \) for all \(z \in \mathbb{C} \).

6. (10 points) (a) (5 points) Let \(f : \mathbb{C} \to \mathbb{C} \) be an entire function. Let \(A, B > 0 \) be positive real numbers such that

\[|f(z)| \leq A |z| + B \quad \text{for all } z \in \mathbb{C}. \]

Show that there exists \(a, b \in \mathbb{C} \) such that

\[f(z) = az + b \quad \text{for all } z \in \mathbb{C}. \]

Hint: Show that \(f'' \) is identically zero.

(b) (5 points) Find the number of zeros (where each zero is counted as many times as its multiplicity) of the polynomial \(f(z) = z^6 - 5z^2 + 10 \) in the annulus \(A = \{ z : 1 < |z| < 2 \} \).

Hint: Apply Rouché’s theorem.