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Linear Algebra

1. (15 points) Consider the following statements. Either prove the statements are true for all matrices
with real entries or provide a counter-example. Note that an orthogonal matrix is square with nonzero,
mutually orthogonal columns. AT denotes the transpose of A.

(a) (3 points) The product of two n× n orthogonal matrices is invertible.

(b) (3 points) The difference between two distinct n× n orthogonal matrices cannot be singular.

(c) (3 points) The product of a symmetric matrix and a diagonal matrix is always symmetric.

(d) (3 points) The Range of an n× n matrix is perpendicular to its Nullspace.

(e) (3 points) If A is an n× n matrix with n odd and A = −AT then A must be singular.

2. (15 points) Consider real matrices with the block form

C =

[
A B
BT 0

]
where A is a symmetric square matrix, BT denotes the transpose of B and B is not necessarily square.
The bottom right block is a square matrix of zeros.

(a) (5 points) Show that C is singular if the number of columns of B is strictly larger than the number
of rows.

(b) (10 points) Show that if A is strictly positive definite, then C is nonsingular iff the columns of B
are linearly independent.

3. (15 points) Let I ∈ RN,N be the N ×N dimensional identity matrix, where N ≥ 2 is an integer, and let
uuu ∈ RN and vvv ∈ RN be any two distinct vectors each with Euclidean length one. Define the matrix A
by

A = I − uuuvvvT .

(a) (5 points) Calculate all the eigenvalues and eigenvectors of A

(b) (3 points) Prove that A is nonsingular and calculate det(A).

(c) (4 points) Derive an explicit formula for A−1.

(d) (3 points) Let I ∈ RN,N for N ≥ 2 be the identity matrix and define eee ∈ RN ≡ (1, . . . , 1)T and
eee1 ∈ RN ≡ (1, 0, 0, . . . , 0)T . Prove that the following linear system(

I − 1

N
eeeeeeT

)
xxx = eee1 ,

has no solution. Next, if eee1 is replaced by an arbitrary vector bbb, what is the condition on bbb for this
problem to have a solution?



Abstract Algebra

4. (15 points) In parts (a) and (b), let Gx = {yxy−1 : y ∈ G} denote the conjugacy class of x in G.

(a) (5 points) Let G be a finite group. Show that the cardinality of Gx divides the order of G.

(b) (5 points) If the group G has order pr where p is a prime, show that there exists some x ∈ G other
than x = e such that Gx = {x}. What does this imply about the center of G?

(c) (5 points) Let G be a group of order ab, where a and b are relatively prime positive integers.
Suppose H is a normal subgroup of G of order a. Show that H contains every subgroup of G whose
order divides a.

5. (15 points) For all parts of this problem, R denotes the ring R = Z[
√
−3] = {m+ n

√
−3: m,n ∈ Z}.

(a) (5 points) Show that 〈2〉, the ideal in R generated by 2, is not a prime ideal.

(b) (5 points) An element x ∈ R is called irreducible if, whenever uv = r in R, then either u or v is a
unit in R. Show that 2 is an irreducible element of R.

(c) (5 points) Find, with proof, an ideal of R that is not principal.

6. (15 points)

(a) (4 points) For any rational number q, show that z = sin(πq) is an algebraic number (that is,
algebraic over Q).

(b) (3 points) Suppose E is an algebraic field extension of a field F . Suppose R is a subring of E which
contains F . Show that R is a field.

(c) (4 points) Let Q(x) be the field of rational functions over Q, and define the two subfields E =
{f(x) ∈ Q(x) : f(x) = f(−x)} and F = {f(x) ∈ Q(x) : f(x) = f(2 − x)}. (You may assume that
these sets are subfields without proving it.) Show that Q(x)/E and Q(x)/F are both algebraic
extensions and determine their degrees.

(d) (4 points) In the notation of part (c), is Q(x)/(E∩F ) an algebraic extension? Justify your answer.
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