The University of British Columbia **Department of Mathematics** Qualifying Examination—Algebra

January 2021

Linear Algebra

- 1. (15 points) Consider the following statements. Either prove the statements are true for all matrices with real entries or provide a counter-example. Note that an orthogonal matrix is square with nonzero, mutually orthogonal columns. A^T denotes the transpose of A.
 - (a) (3 points) The product of two $n \times n$ orthogonal matrices is invertible.
 - (b) (3 points) The difference between two distinct $n \times n$ orthogonal matrices cannot be singular.
 - (c) (3 points) The product of a symmetric matrix and a diagonal matrix is always symmetric.
 - (d) (3 points) The Range of an $n \times n$ matrix is perpendicular to its Nullspace.
 - (e) (3 points) If A is an $n \times n$ matrix with n odd and $A = -A^T$ then A must be singular.
- 2. (15 points) Consider real matrices with the block form

$$C = \left[\begin{array}{cc} A & B \\ B^T & 0 \end{array} \right]$$

where A is a symmetric square matrix, B^T denotes the transpose of B and B is not necessarily square. The bottom right block is a square matrix of zeros.

- (a) (5 points) Show that C is singular if the number of columns of B is strictly larger than the number of rows.
- (b) (10 points) Show that if A is strictly positive definite, then C is nonsingular iff the columns of Bare linearly independent.
- 3. (15 points) Let $I \in \mathbb{R}^{N,N}$ be the $N \times N$ dimensional identity matrix, where $N \geq 2$ is an integer, and let $\boldsymbol{u} \in \mathbb{R}^N$ and $\boldsymbol{v} \in \mathbb{R}^N$ be any two distinct vectors each with Euclidean length one. Define the matrix A by

$$A = I - \boldsymbol{u}\boldsymbol{v}^T$$

- (a) (5 points) Calculate all the eigenvalues and eigenvectors of A
- (b) (3 points) Prove that A is nonsingular and calculate det(A).
- (c) (4 points) Derive an explicit formula for A^{-1} .
- (d) (3 points) Let $I \in \mathbb{R}^{N,N}$ for $N \geq 2$ be the identity matrix and define $\boldsymbol{e} \in \mathbb{R}^N \equiv (1, \ldots, 1)^T$ and $\boldsymbol{e}_1 \in \mathbb{R}^N \equiv (1, 0, 0, \dots, 0)^T$. Prove that the following linear system

$$\left(I - \frac{1}{N} \boldsymbol{e} \boldsymbol{e}^T\right) \boldsymbol{x} = \boldsymbol{e}_1$$

has no solution. Next, if e_1 is replaced by an arbitrary vector **b**, what is the condition on **b** for this problem to have a solution?

Abstract Algebra

- 4. (15 points) In parts (a) and (b), let $G_x = \{yxy^{-1} : y \in G\}$ denote the conjugacy class of x in G.
 - (a) (5 points) Let G be a finite group. Show that the cardinality of G_x divides the order of G.
 - (b) (5 points) If the group G has order p^r where p is a prime, show that there exists some $x \in G$ other than x = e such that $G_x = \{x\}$. What does this imply about the center of G?
 - (c) (5 points) Let G be a group of order ab, where a and b are relatively prime positive integers. Suppose H is a normal subgroup of G of order a. Show that H contains every subgroup of G whose order divides a.
- 5. (15 points) For all parts of this problem, R denotes the ring $R = \mathbb{Z}[\sqrt{-3}] = \{m + n\sqrt{-3} : m, n \in \mathbb{Z}\}.$
 - (a) (5 points) Show that $\langle 2 \rangle$, the ideal in R generated by 2, is not a prime ideal.
 - (b) (5 points) An element $x \in R$ is called *irreducible* if, whenever uv = r in R, then either u or v is a unit in R. Show that 2 is an irreducible element of R.
 - (c) (5 points) Find, with proof, an ideal of R that is not principal.
- 6. (15 points)
 - (a) (4 points) For any rational number q, show that $z = \sin(\pi q)$ is an algebraic number (that is, algebraic over \mathbb{Q}).
 - (b) (3 points) Suppose E is an algebraic field extension of a field F. Suppose R is a subring of E which contains F. Show that R is a field.
 - (c) (4 points) Let $\mathbb{Q}(x)$ be the field of rational functions over \mathbb{Q} , and define the two subfields $E = \{f(x) \in \mathbb{Q}(x): f(x) = f(-x)\}$ and $F = \{f(x) \in \mathbb{Q}(x): f(x) = f(2-x)\}$. (You may assume that these sets are subfields without proving it.) Show that $\mathbb{Q}(x)/E$ and $\mathbb{Q}(x)/F$ are both algebraic extensions and determine their degrees.
 - (d) (4 points) In the notation of part (c), is $\mathbb{Q}(x)/(E \cap F)$ an algebraic extension? Justify your answer.