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In the real and complex analysis parts of this exam, please state carefully any results that you use in your
arguments

Real analysis

1. (a) (2 points) Let K be a subset of a metric space (M,d). Suppose that for every ε > 0, one can cover
K by finitely many ε-balls in M . Does it follow that the closure K of K is compact? Either prove
or give a counterexample.

(b) (4+4=8 points) Let

`2(C) :=
{
x = (x1, x2, . . .) : xj ∈ C, ||x||22 :=

∞∑
j=1

|xj |2 <∞
}

denote the metric space of infinite square summable sequences, with the distance function d(x, y) =
||x− y||2. For α = 1 and α = 2, determine whether the set

Kα =
{
x ∈ `2(C) : |xn| ≤ n−

α
2 for all n = 1, 2, . . .

}
is compact in `2(C).

2. Determine whether the following statements are true or false, with adequate justification.

(a) (2 points) Let T denote the unit circle on the plane centred at the origin. If f : T → C is a
continuous function for which∮

T
znf(z) dz = 0 for all n = 0, 1, 2, · · · ,

then f ≡ 0 on T.

(b) (3 points) Let C1[a, b] denote the space of continuously differentiable real-valued functions on [a, b],
equipped with the norm

||f ||C1 := sup
x∈[a,b]

|f(x)|+ sup
x∈[a,b]

|f ′(x)|.

Then every bounded subset of C1([a, b]) admits a uniformly convergent subsequence.

(c) (5 points) Let N denote the set of positive integers. There exists an uncountable collection {Ni :
i ∈ I} of distinct infinite subsets of N such that Ni ∩ Nj is finite for all i, j ∈ I, i 6= j.

3. (a) (3 points) Specify a class of functions f : R2 → R (which is strictly larger than the class of all
bivariate polynomials) and a family of curves Γ for which∮

Γ

(fydx+ fxdy) = 0.

(b) (3.5 + 3.5 = 7 points) Evaluate ∮
Γ

xdy − ydx
x2 + y2

,

for two choices of Γ:

Γ = {(x, y) ∈ R2 : x2 + y2 = 1} and Γ = {(x, y) ∈ R2 : (x− 2)2 + y2 = 1}.

In both cases, assume that Γ is oriented counterclockwise.



Complex analysis

4. Let DR = {z ∈ C : |z| < R} and let f(z) =
∑∞
n=0 anz

n be analytic in DR. Let u(z) = Re(f(z)).

(a) (5 points) Prove that for all n ∈ N and 0 < r < R,

an =
1

πrn

∫ 2π

0

u(reit)e−intdt.

(b) (5 points) Assume that f(0) ∈ R. Prove that for any 0 < r < R and |z| < r,

f(z) =
1

2π

∫ 2π

0

u(reit)
r + ze−it

r − ze−it
dt .

Hint. (r − ze−it)−1 is analytic.

5. Let Ω ⊂ C be open and such that DR = {z ∈ C : |z| < R} ⊂ Ω. Let f be holomorphic in Ω and assume
that

M = sup{|f(z)| : |z| ≤ R} > 0.

(a) (5 points) Let |z| < R
M . Show that the equation

ζ = zf(ζ)

has a unique solution in DR. Denote this solution by ζ = g(z).

(b) (5 points) Let γ be the positively oriented circle of radius R, centred at the origin. Prove that

g(z) =
1

2πi

∫
γ

ζ(1− zf ′(ζ))

ζ − zf(ζ)
dζ .

6. (10 points) Let m,n ∈ N be such that 0 < m < n. Prove that∫ ∞
0

xm−1

1 + xn
dx =

π/n

sin(πm/n)
.

Hint. Consider the boundary of the sector {reiθ : 0 ≤ θ ≤ 2π/n, 0 ≤ r ≤ R}.
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