The University of British Columbia Department of Mathematics Qualifying Examination—Analysis September 3, 2019

Real analysis

- 1. (10 points) Are the following true or false? If true, give a proof. If false, provide a counterexample and show that your counterexample is correct.
 - (a) Let $v \colon \mathbb{R}^n \to \mathbb{R}^n$ be continuous and let $f \colon \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Then $v \cdot \nabla f$ is continuous.
 - (b) Let $f: \mathbb{R}^2 \to \mathbb{R}$. If $\frac{d^2f}{dxdy}(0,0)$ and $\frac{d^2f}{dydx}(0,0)$ both exist, then they must be equal.
- 2. (10 points) Let $f : [0,1] \to \mathbb{R}$ be bounded. Suppose that f is continuous at every point $x \in [0,1] \setminus \{\frac{1}{n} : n \in \mathbb{N}\}$. Prove that f is Riemann integrable on [0,1].

Note: while it is true that a function g is Riemann integrable provided it is continuous except on a set of measure 0, you cannot use this fact unless you prove it (doing this is not recommended).

3. (10 points) Let (M, d) be a compact metric space and let C(M) be the set of continuous functions $f: M \to \mathbb{R}$. Define a metric ρ on C(M) by $\rho(f, g) = \sup_{x \in M} |f(x) - g(x)|$. For each $x \in M$, define the function $f_x: M \to \mathbb{R}$ by

$$f_x(y) = d(x, y)$$

- (a) Prove that $f_x \in C(M)$ for each $x \in M$.
- (b) Let $A \subset C(M)$ be the algebra generated by the constant functions and the functions $\{f_x : x \in M\}$. Prove that A is dense in C(M).
- (c) Prove that C(M) is separable.

Complex analysis

- 4. (a) (2 points) Express the principal value of $(-1 i\sqrt{3})^{i3\pi}$ in the form of a + ib.
 - (b) (2 points) Evaluate the contour integral $\int_C e^{\pi z} dz$ where C is a semi-circular arc starting at $z_0 = i$ and ending at $z_1 = i/2$, oriented counterclockwise.
 - (c) (3 points) Determine, with complete justification, the domain of analyticity of the function

$$f(z) = \operatorname{Log}(z^2 + 2z + 3),$$

where Log denotes the principal branch of the logarithm. Sketch this domain and find the derivative of f at z = -1.

- (d) (3 points) Calculate $\oint_C e^{1/z} \frac{1}{1-z} dz$ where C is the circle $\{z : |z| = 1/2\}$ oriented counterclockwise.
- 5. (a) (5 points) Suppose f(z) and $\overline{f(z)}$ are both analytic in a domain D. Prove that f must be constant in D.
 - (b) (5 points) Show: If f is entire and $|f(z)| \to \infty$ as $|z| \to \infty$, then f must have at least one zero.
- 6. (a) (2 points) Find and classify the singularities of $f(z) = \frac{\cot(\pi z)}{z^2}$.
 - (b) (3 points) Calculate the residue of $f(z) = \frac{\cot(\pi z)}{z^2}$ at each of its singularities.
 - (c) (3 points) The sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$ can be evaluated by integrating $f(z) = \frac{\cot(\pi z)}{z^2}$ over a suitable contour Γ_N and taking $N \to \infty$. Draw Γ_N and mark the singularities on your diagram. What does Cauchy residue theorem say when applied to Γ_N ?
 - (d) (2 points) State what estimates are required to perform the evaluation of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (you need not prove the estimates). What is the value of the infinite sum?