The University of British Columbia Department of Mathematics Qualifying Examination—Algebra January 5, 2019

This exam consists of problems 1 to 3 on Linear Algebra and problems 4 to 6 on Abstract Algebra. The two subjects will be weighted equally.

- 1. (12 points) Some questions on eigenvalues.
 - (a) For the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, determine the eigenvalues, their algebraic multiplicities, and their geometric multiplicities.
 - (b) A 2 × 2 matrix B has eigenvalues 1 + i and 1 i. Find B^4 and explain your answer.
- 2. (15 points) Consider a 2×2 matrix A with real entries.
 - (a) What are the possible values for rank(A)?
 - (b) For each of the values of rank(A) in (a), make two schematic diagrams (sketches): the first should show the nullspace (or kernel) of A; the second should show the column space (or range) of A.
 - (c) For a full-rank A, make a schematic diagram (sketch) showing the image of the unit circle $x^2 + y^2 = 1$ under the transform $A\begin{bmatrix} x\\ y\end{bmatrix}$.
 - (d) Give the definition of the matrix 2-norm $||A||_2$. Draw a diagram illustrating the definition.
 - (e) Consider s as the set of all points on a line segment. What is the image of s under transformation by A? Justify your answer.

(f) Sketch the set of points (x, y) in \mathbb{R}^2 where $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ has $\|\vec{v}\|_1 = 1$.

- (g) Sketch the image of your previous answer under transformation by A. Indicate $||A||_1$ on your sketch.
- 3. (12 points) Recall that an $n \times n$ orthogonal matrix Q is a matrix where the columns form an orthonormal basis of \mathbb{R}^n .
 - (a) What is $Q^T Q$? Justify your answer.
 - (b) What is Q^{-1} ?
 - (c) Suppose we are given a vector b, an orthogonal matrix Q, and an upper triangular matrix R, such that A = QR. Describe a simple way to solve Ax = b (assuming such an x exists) without explicitly forming A and without using Gaussian Elimination.
 - (d) Continue to assume that A = QR is as in (c), and define B = RQ. What can be said about the eigenvalues of A and the eigenvalues of B? Justify your answer.

4. (10 points) Let R be a commutative ring with unit, and denote by F the set of all functions $f: R \to R$ not necessarily homomorphisms. The set F can be endowed with a ring structure by pointwise addition and multiplication

$$(f+g)(r) = f(r) + g(r)$$
 $(fg)(r) = f(r)g(r).$

There is a homomorphism $e_R : R[t] \to F$ given by $e_R(p)(r) = p(r)$. That is, $e_R(p)$ is the function defined by the polynomial p.

- (a) Find, with proof, a ring S such that e_S is not injective.
- (b) For any element $r \in R$, define an *indicator function* $1_r \in F$ by the formula:

$$1_r(x) = \begin{cases} 1 & \text{if } r = x; \\ 0 & \text{otherwise}; \end{cases}$$

Suppose 1_r is in the image of e_R and $r \neq 0$. Show that r is invertible in R.

- (c) Suppose the homomorphism e_R is surjective. Prove that R is a finite field.
- 5. (10 points) (a) Give, without proof, the isomorphism classes of all groups H of order 25. For each H, determine (with proof) the order of the group Aut(H), the group of automorphisms of the group H.
 - (b) Suppose G is a non-abelian group of order 75. Determine, with proof, the possible isomorphism classes of the Sylow 5 subgroup of G.
 - (c) Construct a non-abelian group of order 75.
- 6. (10 points) Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial. Let E/\mathbb{Q} denote the splitting field, and suppose $\alpha, \beta \in E$ are two distinct roots of f(x) such that $\alpha + \beta \in \mathbb{Q}$. Prove that the degree of f is even.