UBC Department of Mathematics Qualifying Exam in Analysis

January, 2017

Every problem is worth 10 points.

Problem 1: Let D be the open unit disc, ∂D its boundary and \overline{D} its closure. Let f_n be a sequence of functions holomorphic in D, continuous on \overline{D} , and converging uniformly on ∂D . Show that f_n converges uniformly on \overline{D} (you may use that a sequence a_n converges uniformly iff $\{a_n\}$ is uniformly Cauchy).

Problem 2: Use residues to calculate $\int_{-\infty}^{\infty} \frac{1}{1+x^3} dx$

Problem 3: Consider the upper half plane $U = \{z : Imz \ge 0\}$. Let f be continuous on the closure \overline{U} such that f(x) is real for x real, and f is holomorphic on U. Let F(z) be the extension of f to lower half plane defined by $F(z) = \overline{f(\overline{z})}$ where Imz < 0. Show that F(z) is entire. (you may assume F(z) is continuous. You may also assume that in the statement of Moreras theorem, the closed loops are all rectangles).

Problem 4:

For each of the following vector fields \mathbf{F} , determine if \mathbf{F} is conservative on \mathbb{R}^3 . For each that is conservative (i.e., a gradient vector field), find all potentials f for \mathbf{F} , i.e., all C^1 functions f such that $\nabla(f) = \mathbf{F}$.

1.
$$\mathbf{F} = (xz, xy, yz)$$

2. $\mathbf{F} = (2y\sin(yz), \ 2x\sin(yz) + 3z + 2xyz\cos(yz), \ 2xy^2\cos(yz) + 3y)$

Problem 5: Let $a_{m,n} \ge 0$, and assume that each $a_{m+1,n} \le a_{m,n}$ and $a_{m,n+1} \le a_{m,n}$. Show that $\lim_{m \to \infty} \lim_{n \to \infty} a_{m,n} = \lim_{n \to \infty} \lim_{m \to \infty} a_{m,n} = a$, for some $a \ge 0$. **Problem 6:** Let M be a compact metric space and $f: M \to M$ be continuous.

- 1. Let $M \times M$ be given metric $\rho((x, y), (x', y')) = d(x, x') + d(y, y')$. Show that the function d(x, y) from $M \times M$ to \mathbb{R} is continuous.
- 2. Let $r := \inf_{x \in M} d(x, f(x))$. Show that r = d(x, f(x)) for some $x \in M$.
- 3. Suppose that

for all
$$x, y \in M$$
 s.t. $x \neq y$, $d(f(x), f(y)) < d(x, y)$. (1)

Show that f has a unique fixed point.