UBC Department of Mathematics Qualifying Exam in Analysis

January, 2017

Every problem is worth 10 points.

Problem 1: Let D_{2017} denote the dihedral group of the regular 2017-gon. Find the number of ordered commuting pairs of elements in D_{2017} , i.e. the size of

$$\{(a,b) \in D^2_{2017} : ab = ba\}.$$

Problem 2: Let $f(x) = x^4 + x^2 + x + 1$ be a polynomial over the rational numbers.

- 1. Prove that f(x) is irreducible over \mathbb{Q} .
- 2. Let s be a root of f(x). Write down the following elements in the $\{1, s, s^2, s^3\}$ basis of $\mathbb{Q}(s)$:
 - (a) s^7
 - (b) s^{-1} .

Problem 3: Let $f(x) = x^4 - 2$ be a polynomial over the rational numbers and let *E* be the splitting field of f(x) over \mathbb{Q} .

- 1. Prove that $E = \mathbb{Q}(\sqrt[4]{2}, i)$ and determine $\deg(E/\mathbb{Q})$.
- 2. Prove that $Gal(E/\mathbb{Q}) = D_4$.
- 3. Find every intermediate field K, between \mathbb{Q} and E.
- 4. Show that the extension of \mathbb{Q} by one root of f(x) is not normal.

Problem 4: Find a matrix, $A \in \mathbb{R}^{2 \times 2}$, satisfying

$$A = A^T$$
, $A_{1,1} + A_{2,2} = 5$, $\sum_{i,j} A_{i,j} = 19$, $-A_{1,1} + A_{2,1} + A_{1,2} = 11$.

Problem 5: Let \mathcal{P}_2 be the space of polynomials $a + bx + cx^2$ of degree at most 2 and with the inner product

$$\langle p,q\rangle = \int_{-1}^{1} p(x) \cdot q(x) dx.$$

- 1. Give an orthonormal basis for the orthogonal complement of $\operatorname{span}(x)$.
- 2. Let *l* be the functional defined by l(p) := p(0) for each $p \in \mathcal{P}_2$. Find $h \in \mathcal{P}_2$ so that $l(p) = \langle h, p \rangle$ for each $p \in \mathcal{P}_2$.

Problem 6: Let $A, B \in \mathbb{R}^{3\times3}$. Let $I \in \mathbb{R}^{3\times3}$ be the 3 by 3 identity matrix. Suppose that A has eigenvalues $\{-1, 4, 10\}$ and B has eigenvalues $\{-2, 4, 7\}$. For each of the following matrices, if possible determine the eigenvalues. If not, state that there is insufficient information to determine the eigenvalues.

- 1. A^2 .
- 2. $A \cdot B$.
- 3. A + B.
- 4. $A 5 \cdot I$.
- 5. $A + A^{-1}$.