The University of British Columbia Department of Mathematics Qualifying Examination—Algebra September 8, 2015

1. (a) Find A^{10} for the matrix A given below:

 $A = \begin{bmatrix} -7 & -3 \\ 18 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix}.$

- (b) Let $P_2[x]$ denote the set of all polynomials in x having real coefficients and degree at most 2. Determine a basis for $P_2[x]$ which contains both $1 + x + x^2$ and $2 + x + x^2$.
- (c) Find all possible values of det $(A + A^{-1})$, allowing arbitrary 3×3 matrices A with eigenvalues -1, 1, 2.
- 2. Let $M_{3\times3}$ be the vector space consisting of all 3×3 matrices (with elementwise addition and the usual scalar multiplication). Let 0 denote the zero matrix in $M_{3\times3}$. For each matrix A in $M_{3\times3}$, define

$$Z(A) = \{ B \in M_{3 \times 3} : BA = 0 \}.$$

- (a) Show that for each fixed $A \in M_{3\times 3}$, the set Z(A) is a subspace of $M_{3\times 3}$.
- (b) Find the dimension of Z(0), where 0 denotes the zero matrix in $M_{3\times 3}$.
- (c) Suppose $A \in M_{3\times 3}$ and rank(A) = 2. Find dim(Z(A)).
- 3. Let k vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ in \mathbb{R}^d be given. Assume that, for some constant $\alpha \in (0, 1)$,

$$\mathbf{u}_i^T \mathbf{u}_j = \begin{cases} 1, & \text{if } i = j \\ \alpha, & \text{if } i \neq j \end{cases}$$

(Such a collection of unit vectors is called *equiangular*. Notice that the statement $\mathbf{u}_j^T \mathbf{u}_j = 1$ implicitly specifies that each \mathbf{u}_j is a *column* vector of unit length.)

Consider the set of $d \times d$ matrices $S = \{\mathbf{u}_i \mathbf{u}_i^T : i = 1, 2, \dots, k\}$. Prove the following.

- (a) If the matrices in S are linearly independent, then $k \leq \frac{d(d+1)}{2}$.
- (b) The matrices in S are, in fact, linearly independent. Hint: One approach starts by postulating the matrix equation $\sum_{i=1}^{k} a_i \mathbf{u}_i \mathbf{u}_i^T = 0$, then multiplying from the left by \mathbf{u}_i^T and from the right by \mathbf{u}_j .
- 4. Suppose $a, b \in \mathbb{C}$. Show that the ideal (x a, y b) in $\mathbb{C}[x, y]$ generated by x a and y b is a maximal ideal.
- 5. Suppose p is a prime number. In parts (b)–(d) below, assume $d \ge 2$ is an integer. Recall that for any field \mathbb{F} , $GL_d(\mathbb{F})$ is the group of invertible $d \times d$ matrices with entries drawn from \mathbb{F} .
 - (a) Show that $\mathbb{F} = \mathbb{Z}/p\mathbb{Z}$ is a field.
 - (b) Show that $GL_d(\mathbb{Z}/p\mathbb{Z})$ is a finite group and compute its order in terms of d.
 - (c) Let U be the subgroup of $GL_d(\mathbb{Z}/p\mathbb{Z})$ consisting of upper triangular matrices with all diagonal entries equal to 1. Find the order of U.
 - (d) Show that d! divides the order of $GL_d(\mathbb{Z}/p\mathbb{Z})$. Hint: realize the symmetric group as a subgroup.

6. (10 points) Part (b) below has many correct answers. Choose one that will help with part (c).
(a) Suppose m, n ≥ 1 are integers. Compute the group of morphisms

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z}).$$

(b) Find an example of a short exact sequence of abelian groups

$$0 \to G' \to G \to G'' \to 0.$$

(c) For the groups G, G', G'' in part (b), find an abelian group K for which the following sequence is NOT exact:

 $0 \to \operatorname{Hom}_{\mathbb{Z}}(K, G') \to \operatorname{Hom}_{\mathbb{Z}}(K, G) \to \operatorname{Hom}_{\mathbb{Z}}(K, G'') \to 0.$