The University of British Columbia Department of Mathematics Qualifying Examination—Differential Equations

January 2025

Linear Algebra

1. 10 marks Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array} \right]$$

- (a) Determine the eigenvalues of A. (Hint: 1 is an eigenvalue). [2 marks]
- (b) Determine the corresponding eigenvectors and a matrix S that will diagonalize A via a similarity transformation. [5 marks]
- (c) Does there exist a real 3×3 matrix such that $B^2 = A$? If so, explain how you would compute it, and if not, explain why not. [3 marks]
- 2. |10 marks| (a) Let u, v, w be three unit vectors in \mathbb{R}^3 such that

$$u \cdot v = -\frac{1}{2}, \ u \cdot w = -\frac{1}{2}, \ \text{and} \ v \cdot w = -\frac{1}{2}$$

Show that u + v + w = 0. [2 marks]

- (b) Does there exist a real 2×2 matrix A such that $A^3 = O$, but $A^2 \neq O$? (O is the zero matrix). If so, give an example, and if not, explain why not.[3 marks]
- (c) Let P be an orthogonal projection matrix, projecting onto the subspace S.
 - Let R = I 2P. Show that R is an orthogonal matrix and that $R^2 = I$. [3 marks]
 - Onto what space does I P project? [1 mark]
 - What is the relation between the nullspaces of P and I P? [1 mark]
- 3. 10 marks Consider the following discrete dynamical system representing the evolution of three distinct species:

$$\mathbf{u}_{n+1} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix} \mathbf{u}_n$$

- (a) Show that the total population (sum of the three components of **u**) is preserved from one generation n to the next n + 1. [2 marks]
- (b) Determine the eigenvalues of the matrix. [3 marks]
- (c) One of the eigenvalues is repeated. Find an orthonormal basis for the eigenspace associated with this eigenvalue. [3 marks]
- (d) Starting with an initial population distribution $\mathbf{u}_0 = [9, 15, 6]^T$, determine the population distribution as $n \to \infty$. [2 marks]

Differential Equations

1. 10 marks Consider the conservative equation

$$x'' - x + x^3 = 0.$$

- (a) Transform this 2nd-order ODE into a system of 1st-order ODEs by introducing a new variable y(t) = x'(t). Find all fixed points (a.k.a. critical points or equilibria).
- (b) Show that it is a conservative system by solving the quantity (also known as the energy) that is conserved by this system.
- (c) For each fixed point found in (a), use linearization to determine the stability (if possible) and local behaviour (if possible using a local phase portrait in x, y-plane) near that point.
- (d) Sketch the nullclines and the global phase portrait in x, y-plane. Combined with the conservation equation of this conservative system, filling up the parts of the phase portrait local phase portraits in (b) could not yield.
- 2. <u>10 marks</u> Solve the following nonhomogeneous wave equation using standard separation-of-variables methods:

(PDE)
$$u_{tt} = u_{xx} + \pi^2 \sin \pi x,$$
 $0 < x < 1,$ $t > 0,$
(BC) $u(0,t) = 0, \ u_x(1,t) = -\pi,$ $t > 0,$
(IC) $u(x,0) = 2 \sin \pi x,$ $0 < x < 1,$
 $u_t(x,0) = 0,$ $0 < x < 1.$

- 3. 10 marks Solve initial value problems using Laplace transformation. For a function u(t), $t \ge 0$, define a linear operator L such that Lu = u'' + 3u' + 2u.
 - (a) Solve the initial value problem Ly = 0, y(0) = 1, y'(0) = -1.
 - (b) Solve the initial value problem $Lv = \delta(t), v(0) = 0, v'(0) = 0.$
 - (c) Solve the initial value problem Lx = f(t), x(0) = 1, x'(0) = -1, and describe the behaviour of x(t) for large t, where

$$f(t) = \begin{cases} 0, & \text{if } 0 \le t < 3, \\ 4, & \text{if } t \ge 3 \end{cases} = 4h(t-3).$$

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1. 1	$\frac{1}{s}, \qquad s > 0$
2. e ^{at}	$\frac{1}{s-a}, \qquad s>a$
3. t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
4. t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s>0$
5. sin at	$\frac{a}{s^2 + a^2}, \qquad s > 0$
6. cos at	$\frac{s}{s^2 + a^2}, \qquad s > 0$
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $
8. cosh <i>at</i>	$\frac{s}{s^2-a^2}, \qquad s> a $
$9. e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s > a$
). $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$
$t^n e^{at}, n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$
. <i>u_c(t)</i>	$\frac{e^{-cs}}{s}, \qquad s > 0$
$u_c(t)f(t-c)$	$e^{-cs}F(s)$
$e^{ct}f(t)$	F(s-c)
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c>0$
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
$\delta(t-c)$	e ^{-cs}
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \cdots$
$(-t)^n f(t)$	$F^{(n)}(s)$