
Math 605D Tensor Decompositions and Applications

Fall 2020 - Syllabus

With the emergence of big data, it is more and more often the case that we encounter
tensor-shaped data. The importance of being able to decompose a tensor is (at least) two-
fold. First, finding the decomposition provides hidden information about the data at hand,
and second, having a concise decomposition of the tensor allows us to store it much more
efficiently. One of the biggest obstacles in dealing with tensors, however, is that decomposing
them is often computationally hard.

This research-oriented course will introduce tensors (or multi-dimensional arrays) and
their uses in statistics, machine learning, and the sciences. In particular, we will illustrate
fundamental theoretical properties of several types of tensor decompositions, including CP-
decomposition, nonnegative matrix and tensor decomposition, Tucker decomposition as well
as tensor network decompositions arising from physics. We will see how these naturally come
up in hidden variable models, Gaussian mixture models, directed and undirected graphical
models, blind source separation, independent component analysis, and quantum physics. We
will discuss algorithms for computing such decompositions, and will exhibit open problems.

Instructor: Elina Robeva, erobeva@math.ubc.ca, URL: https://math.ubc.ca/~erobeva/.

Class time: TTh 9:30 - 10:50 Pacific Time.

Class location: Zoom

Class website: https://sites.google.com/view/ubc-math-605d/

Prerequisites: Besides general mathematical maturity, the minimal suggested requirements
for the course are linear algebra (e.g., one of Math 221, 223, 307), and basic probability
(e.g., one of Math 302, 318). Some familiarity with machine learning is encouraged,
but not required.

Bibliography: We will use a variety of book chapters and current papers. Some of these
are listed at the end of this syllabus.

Lecture notes: Lecture notes and homework will be posted on the course website.

Grades: Research project 50%, Homework 40%, Scribing 5%, Participation 5%.

Research Project: This course includes a research project in which students address a
topic of their choice. A one-page abstract describing the goals of the project, the main
questions, and the approaches the students plan to take, is due midway through the
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term. Final presentations are during the last two lectures of the course and a final
write-up of the project of maximally 10 pages is due at the end of the term. Students,
preferably of different backgrounds, can pair up for the final project.

Homework: There will be 3 problem sets, and they will be due two weeks after they were
handed out via email to erobeva@math.ubc.ca. Late homework will not be accepted,
unless there is a prior arrangement with the instructor.

If you miss a homework for a valid reason (see UBC Vancouver Senate?s Academic
Concession Policy V-135), please fill out an academic concession form and bring it to
the instructor. The weight of the missed homework will be transferred onto the re-
maining homework assignment. Note that in accordance with UBC policy for academic
concessions, this form may be used ONCE per course. On a second instance, students
will be expected to provide documentation.

Scribe work: Each student will also be responsible for editing and/or writing lecture notes
from two lectures.

Collaboration policy: We encourage working together whenever possible. However, the
handed in homework solutions should reflect each student’s own understanding of the
class material. It is not acceptable to copy a solution that somebody else has written.
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Tentative Course Schedule

Lec. Topic

1. Course Overview and Motivating Examples

2. CP decomposition - definition and properties

3. Examples of CP decomposition - latent variable models, Gaussian mixture models

4. Examples of CP decomposition - blind source separation, ICA, the method of moments

5. NP-hardness

6. Algorithms for CP decomposition - Jennrich’s algorithm, alternating least squares

7. Algorithms for CP decomposition - semidefinite relaxations

8. Atomic norm minimization and the tensor nuclear norm

9. Eigenvectors of tensors, the tensor power method, orthogonally decomposable tensors

10. Overcomplete CP decompositions - the subspace power method

11. Tensor network decompositions - motivation from quantum physics

12. Tensor network decompositions - Tucker, MPS (aka Tensor Train), PEPS, MERA

13. Graphical models - undirected, Markov properties

14. Correspondence between graphical models and tensor networks

15. Nonnegative matrix decompositions - nonnegative rank, properties, examples

16. Nonnegative matrix decompositions - alternating least squares, EM, other algorithms

17. Nonnegative matrix decompositions - geometric description

18. Nonnegative tensor decompositions - properties, examples, algorithms

19. Total positivity - properties and relationship to nonnegative tensor decomposition

20. Graphical models - directed acyclic; Markov properties, equivalence classes

21. Graphical models - latent variables, Markov properties

22. Linear structural equation models (LSEM) - Gaussian vs. non-Gaussian; Darmois-Skitovich

23. Independent Component Analysis and learning non-Gaussian LSEMs

24. Project presentations

25. Project presentations
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