SYLLABUS FOR 603D: HOMOTOPY THEORY AND \mathbb{A}^1 -Homotopy theory

1. CONTACT INFORMATION

The instructor for this course is me, Ben Williams. I may be reached at tbjw@math.ubc.ca. The course website is http://www.math.ubc.ca/~tbjw/A1Homotopy/index.html.

2. TIME AND PLACE

The first meeting will be in MATX 1102 on Monday 6 January 2020 at 11am. Future meetings may be at a different time, depending on the preferences of students wishing to take the course.

3. Description & Prerequisites

This is a topics course in topology. The intent is to assume only a reasonable amount of background, and by the end of the course to define and say something meaningful about \mathbb{A}^1 -homotopy theory (also known as *motivic homotopy theory*. This will require skipping very many proofs in lecture, but the advantage is that the prerequisites are

- A first course in algebraic topology, including the definitions of homotopy and homotopy groups and homological algebra.
- Undergraduate algebra—rings, ideals, groups etc.
- The basics of the theory of schemes, including the Spec functor, the definition of a scheme and the theory of varieties.
- The basics of category theory, the definition of limits, colimits, adjoint functors.

If you'd like to take the course but feel you lack some of the above, let me know.

4. Homework & Grades

A number of homework exercises will be handed out over the course of the term. These will form the basis of the final grade for anyone registered in this course.

5. OUTLINE

The course is in three parts. The provisional number of lectures for each topic is listed.

5.1. Abstract and simplicial homotopy theory.

- (1) Model categories and their homotopy categories. [2]
- (2) Quillen adjunctions. [1]
- (3) Simplicial sets. [1]

- (4) Realization of simplicial sets. [1]
- (5) The model structure on simplicial sets. [2]
- (6) Monoidal and simplicial model structures.[1]
- (7) Homotopy colimits and limits. [2]
- (8) Homotopy cofibre and fibre sequences. [1]
- (9) Left Bousfield localization. [1]

5.2. Local Homotopy Theory.

- (10) Sheaf theory for Grothendieck topologies.[2]
- (11) FPPF descent. [1]
- (12) The étale and Nisnevich topologies. [2]
- (13) Local homotopy theory. [3]
- (14) The Dold–Kan correspondence. [1]
- (15) Classifying spaces and torsors. [2]

5.3. \mathbb{A}^1 Homotopy Theory.

- (16) Definition of \mathbb{A}^1 model structures. [2]
- (17) The Sing^{A¹}-construction and naïve homotopy. [2]
- (18) Purity. [2]
- (19) Realizations. [1]
- (20) Spheres and contractions. [1]
- (21) Representable cohomology theories: motivic cohomology, *K*-theory, algebraic cobordism. [3]
- (22) Vector bundles from the motivic point of view. [2]

6. References

The following will be the principal references used during the term. This list may be updated:

- For model categories: [Hov99] and [Hir03].
- For simplicial homotopy theory, [Hov99] again, but it is largely drawn from [GJ99].
- For the theory of sheaves: [MLM92].
- For algebraic geometry, the standard reference is [Har77] but we will draw heavily on the Stacks Project, e.g. [de 16].
- For local homotopy theory: [JSS15] is a definitive source, but we will not need the full generality of this work.
- For -homotopy theory, the original source is [MV99], but there are easier-to-read introductions now, e.g. [AE16].
- For select topics in homotopy, we may look at [Caz08], [AHW17], [ST15].

References

- [AE16] Benjamin Antieau and Elden Elmanto. A primer for unstable motivic homotopy theory. *arXiv:1605.00929 [math]*, November 2016.
- [AHW17] Aravind Asok, Marc Hoyois, and Matthias Wendt. Affine representability results in A¹-homotopy theory, I: Vector bundles. Duke Mathematical Journal, 166(10):1923–1953, 2017.
- [Caz08] Christophe Cazanave. Homotopy classes of rational functions. *Comptes rendus Mathematique*, 346(3-4):129, February 2008.
- [de 16] A. J. de Jong. Stacks Project Chapter 7: Sites and Sheaves. http://stacks.math.columbia.edu/chapter/7, 2016. Tag 00UZ.
- [GJ99] Paul G. Goerss and John F. Jardine. *Simplicial Homotopy Theory*, volume 174 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 1999.
- [Har77] Robin Hartshorne. Algebraic Geometry, volume 52 of Gradute Texts in Mathematics. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
- [Hir03] Philip S Hirschhorn. Model Categories and Their Localizations. Number v. 99 in Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.
- [Hov99] Mark Hovey. *Model Categories*, volume 63 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 1999.
- [JSS15] John F. Jardine, SpringerLink (Online service), and SpringerLINK ebooks Mathematics and Statistics. *Local Homotopy Theory*. Springer Monographs in Mathematics. Springer New York, DE, 2015.
- [MLM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Universitext. Springer-Verlag, January 1992.
- [MV99] Fabien Morel and Vladimir Voevodsky. A¹-homotopy theory of schemes. Publications Mathématiques de L'Institut des Hautes Scientifiques, 90(1):45 – 143, December 1999.
- [ST15] Marco Schlichting and Girja S. Tripathi. Geometric models for higher Grothendieck–Witt groups in A¹-homotopy theory. Mathematische Annalen, 362(3-4):1143–1167, August 2015.