Course outline for Math 257/316 (2019S May-June Term 1) Partial Differential Equations

Prerequisites: One of Math 215, 255, 265.

Credit: 3 Credits. Credit only given for one of Math 257, 316.

Instructor: Jordan MacKenzie, Office: PPC 219, Office hours: T/Th 14:30-16:00.

Home Page: Jordan MacKenzie

Assessment: The final grades will be based on 5 in class quizzes (10% each) and one final exam (50%). There will be no make up quizzes. A student must get at least 35% on the final exam to pass this course.

Test Dates: May 13, 21, 27 and June 10, 17.

Text: Elementary Differential Equations and Boundary Value Problems (10th Ed), W.E. Boyce & R.C. DiPrima (John Wiley & Sons) 2012. This text is recommended but not required.

Other References:

- 1. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (4th Ed), R. Haberman, (Pearson), 2004.
- 2. http://www.math.ubc.ca/rfroese/notes/Lecs316.pdf, Richard Froese, Partial Differential Equations, UBC Math 257/316 lecture notes free online.

Topics:	Approx. Time
1. Review of techniques to solve ODEs	1 hr
2. Series solutions of variable coefficient ODEs (Chapter 5)	
(a) Series solutions at ordinary points (5.1-5.3)	3 hrs
(b) Regular singular points (5.4-5.7, 5.8 briefly).	3 hrs
3. Introduction to Partial differential equations (Chapter 10)	
(a) The heat equation (10.5) , the wave equation (10.7) and Laplace's equation (10.8)	3 hrs
4. Introduction to numerical methods for PDEs using Matlab	3 hrs
(a) First and second derivate approximations using finite differences	
(b) Finite difference approximation of Laplace's equation - iterative methods	
(c) Explicit finite difference schemes for the heat equation	
(d) Explicit finite difference schemes for the wave equation	
5. Fourier Series and Separation of Variables (Chapter 10)	
(a) The heat equation and Fourier Series (10.1-10.6)	9 hrs
(b) The wave equation (10.7)	3 hrs
(c) Laplace's equation (10.8)	4 hrs
6. Boundary Value Problems and Sturm-Liouville Theory (Chapter 11)	
(a) Eigenfunctions and eigenvalues (11.1)	1 hr
(b) Sturm-Liouville boundary value problems (11.2)	$1 \ hr$
(c) Non-homogeneous boundary value problems (11.3)	2 hrs
	Tests: 5 hrs
	Total: 38 hrs