Course Outline for Mathematics 257/316 (3 credits) Term 1, Sept.-Dec., 2015 Partial Differential Equations

Prerequisites: Credit: Instructor: Home Page: Office Hours: Assessment:	One of Math 215, 255, 265. 3 Credits. Credit only given for one of Math 256, 257, 316. Anthony Peirce, <u>Office:</u> Mathematics Building 108 <u>http://www.math.ubc.ca/~peirce</u> Monday: 10-11 am, Wed: 3-3:55 pm, Fri: 10-11 am. The final grades will be based on homework (15%) (include EXCEL/MATLAB projects), two in class midterm exams (and one final exam (50%). Assignments are to be submitted bard acoust from at the designated class	ing (35%) t ed in		
	hard-copy from at the designated class – no late assignmented the accordance will be no molecular middle	nemts		
Test Dates:	can be accepted. There will be no make-up midterms. Wednesday, October 21 st , Wednesday, November 18 th .			
<u>Test Dates.</u> <u>Test:</u>	Elementary Differential Equations and Boundary Value Pro	hlems		
	th			
(recommended)	(10 Ed), W.E. Boyce and R.C. DiPrima (John Wiley of 2012)	& Sons)		
Other References:	1. Partial Differential Equations with Fourier Series and Bounda	arv Value		
<u>other References</u>	 Problems (2 Ed), by N.H. Asmar, (Pearson), 2004. 2. Applied Partial Differential Equations with Fourier Series and 			
	Value Problems (4 Ed), R. Haberman, (Pearson), 2004.	-		
	3. http://www.math.ubc.ca/~rfroese/notes/Lecs316.pdf, Richard Froe	se, Partial		
T	Differential Equations, UBC M257/316 lecture notes free on the web.			
<u>Topics:</u>		x Time		
1. Review of techni	-	1 hr		
	of variable coefficient ODEs (Chapter 5)	3 hrs		
a. Series solutions at ordinary points (5.1-5.3)b. Regular singular points (5.4-5.7, 5.8 briefly)		$\frac{3 \text{ ms}}{4 \text{ hrs}}$		
-	Partial differential equations (Chapter 10)	4 111 5		
	(10.8). (10.8). (10.8). (10.8)	2 hrs		
-	numerical methods for PDEs using spread sheets	$\frac{2}{3}$ hrs		
	second derivative approximations using finite differences - e			
b. Explicit finite difference schemes for the heat equation				
Stability and derivative boundary conditions				
	nite difference schemes for the wave equation			
-	erence approximation of Laplace's Equation – iterative meth	nods		
	nd Separation of Variables (Chapter 10)			
	equation and Fourier Series (10.1-10.6)	9 hrs		
b. The wave equation (10.7)		3 hrs		
c. Laplace's	equation (10.8)	5 hrs		
6. Boundary Value Problems and Sturm-Liouville Theory (Chapter 11)				
	tions and eigenvalues (11.1)	1 hr		
	buville boundary value problems (11.2)	1 hr		
c. Nonhomo	geneous boundary value problems (11.3)	2 hrs		
	Tests	$\frac{2 \text{ hrs}}{261}$		
		36 hrs		

Math 257-316 PDE Formula sheet - final exam

Trigonometric and Hyperbolic Function identities

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$	$\sin^2 t + \cos^2 t = 1$
$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \beta \sin \alpha.$	$\sin^2 t = \frac{1}{2} \left(1 - \cos(2t) \right)$
$\sinh(\alpha \pm \beta) = \sinh\alpha \cosh\beta \pm \sinh\beta \cosh\alpha$	$\cosh^2 \bar{t} - \sinh^2 t = 1$
$\cosh(\alpha \pm \beta) = \cosh \alpha \cosh \beta \pm \sinh \beta \sinh \alpha.$	$\sinh^2 t = \frac{1}{2} \left(\cosh(2t) - 1 \right)$

Basic linear ODE's with real coefficients

	constant coefficients	Euler eq
ODE	ay'' + by' + cy = 0	$ax^2y'' + bxy' + cy = 0$
indicial eq.	$ar^2 + br + c = 0$	ar(r-1) + br + c = 0
$r_1 \neq r_2$ real	$y = Ae^{r_1x} + Be^{r_2x}$	$y = Ax^{r_1} + Bx^{r_2}$
$r_1 = r_2 = r$	$y = Ae^{rx} + Bxe^{rx}$	$y = Ax^r + Bx^r \ln x $
$r = \lambda \pm i\mu$	$e^{\lambda x}[A\cos(\mu x) + B\sin(\mu x)]$	$x^{\lambda}[A\cos(\mu \ln x) + B\sin(\mu \ln x)]$

Series solutions for y'' + p(x)y' + q(x)y = 0 (*) around $x = x_0$.

Ordinary point x_0 : Two linearly independent solutions of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Regular singular point x_0 : Rearrange (*) as: $(x - x_0)^2 y'' + [(x - x_0)p(x)](x - x_0)y' + [(x - x_0)^2q(x)]y = 0$ If $r_1 > r_2$ are roots of the indicial equation: r(r - 1) + br + c = 0 where $b = \lim_{x \to x_0} (x - x_0)p(x)$ and $c = \lim_{x \to x_0} (x - x_0)^2q(x)$ then a solution of (*) is

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}$$
 where $a_0 = 1$

The second linerly independent solution y_2 is of the form: Case 1: If $r_1 - r_2$ is neither 0 nor a positive integer:

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$$
 where $b_0 = 1$.

Case 2: If $r_1 - r_2 = 0$:

$$y_2(x) = y_1(x)\ln(x-x_0) + \sum_{n=1}^{\infty} b_n(x-x_0)^{n+r_2}$$
 for some $b_1, b_{2...}$

Case 3: If $r_1 - r_2$ is a positive integer:

$$y_2(x) = ay_1(x)\ln(x-x_0) + \sum_{n=0}^{\infty} b_n(x-x_0)^{n+r_2}$$
 where $b_0 = 1$.

Fourier, sine and cosine series

Let f(x) be defined in [-L, L] then its Fourier series Ff(x) is a 2*L*-periodic function on **R**:

$$Ff(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}) \right\}$$

where $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$ **Theorem (Pointwise convergence)** If f(x) and f'(x) are piecewise continuous, then Ff(x) converges for every x to $\frac{1}{2}[f(x-)+f(x+)]$. **Parseval's indentity**

$$\frac{1}{L} \int_{-L}^{L} |f(x)|^2 dx = \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} \left(|a_n|^2 + |b_n|^2 \right).$$

For f(x) defined in [0, L], its cosine and sine series are

$$Cf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L}), \quad a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{n\pi x}{L}) \, dx,$$
$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{L}), \quad b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) \, dx.$$

Sturm-Liouville Eigenvalue Problems

ODE: $[p(x)y']' - q(x)y + \lambda r(x)y = 0, \quad a < x < b.$ BC: $\alpha_1 y(a) + \alpha_2 y'(a) = 0, \quad \beta_1 y(b) + \beta_2 y'(b) = 0.$

Hypothesis: p, p', q, r continuous on [a, b]. p(x) > 0 and r(x) > 0 for $x \in [a, b]$. $\alpha_1^2 + \alpha_2^2 > 0$. $\beta_1^2 + \beta_2^2 > 0$.

Properties (1) The differential operator Ly = [p(x)y']' - q(x)y is symmetric in the sense that (f, Lg) = (Lf, g) for all f, g satisfying the BC, where $(f, g) = \int_a^b f(x)g(x) dx$. (2) All eigenvalues are real and can be ordered as $\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$ with $\lambda_n \to \infty$ as $n \to \infty$, and each eigenvalue admits a unique (up to a scalar factor) eigenfunction ϕ_n .

(3) **Orthogonality**: $(\phi_m, r\phi_n) = \int_a^b \phi_m(x)\phi_n(x)r(x) dx = 0$ if $\lambda_m \neq \lambda_n$. (4) **Expansion**: If $f(x) : [a, b] \to \mathbf{R}$ is square integrable, then

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x), \ a < x < b \ , \ c_n = \frac{\int_a^b f(x)\phi_n(x)r(x) \, dx}{\int_a^b \phi_n^2(x)r(x) \, dx}, \ n = 1, 2, \dots$$