Course Outline for Mathematics 257/316 (3 credits) Term 1, Sept.-Dec., 2015

Partial Differential Equations

Prerequisites:
Credit: Instructor: Home Page: Office Hours: Assessment:

Test Dates:
Text:
(recommended)

Other References:
One of Math 215, 255, 265.
3 Credits. Credit only given for one of Math 256, 257, 316.
Anthony Peirce, Office: Mathematics Building 108
http://www.math.ubc.ca/~peirce
Monday: 10-11 am, Wed: 3-3:55 pm, Fri: 10-11 am.
The final grades will be based on homework (15\%) (including EXCEL/MATLAB projects), two in class midterm exams (35\%) and one final exam (50\%). Assignments are to be submitted in hard-copy from at the designated class - no late assignments can be accepted. There will be no make-up midterms. Wednesday, October $21^{\text {st }}$, Wednesday, November $18^{\text {th }}$. Elementary Differential Equations and Boundary Value Problems ($10^{\text {th }}$ Ed), W.E. Boyce and R.C. DiPrima (John Wiley \& Sons) 2012

1. Partial $\underset{\text { Dif }}{\text { Differential Equations with Fourier Series and Boundary Value }}$ Problems (2 Ed), by N.H. Asmar , (Pearson), 2004.
2. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (4 Ed), R. Haberman, (Pearson), 2004. 3. http://www.math.ubc.ca/~rfroese/notes/Lecs316.pdf, Richard Froese, Partial Differential Equations, UBC M257/316 lecture notes free on the web.
Topics:
Approx Time
3. Review of techniques to solve ODEs
4. Series Solutions of variable coefficient ODEs (Chapter 5)
a. Series solutions at ordinary points (5.1-5.3) 3 hrs
b. Regular singular points (5.4-5.7, 5.8 briefly) 4 hrs
5. Introduction to Partial differential equations (Chapter 10)

The heat equation (10.5), the wave equation (10.7), Laplace's equation (10.8) 2 hrs
4. Introduction to numerical methods for PDEs using spread sheets 3 hrs
a. First and second derivative approximations using finite differences - errors
b. Explicit finite difference schemes for the heat equation

- Stability and derivative boundary conditions
c. Explicit finite difference schemes for the wave equation
d. Finite difference approximation of Laplace's Equation - iterative methods

5. Fourier Series and Separation of Variables (Chapter 10)
a. The heat equation and Fourier Series (10.1-10.6) 9 hrs
b. The wave equation (10.7) 3 hrs
c. Laplace's equation (10.8) 5 hrs
6. Boundary Value Problems and Sturm-Liouville Theory (Chapter 11)
a. Eigenfunctions and eigenvalues (11.1) 1 hr
b. Sturm-Liouville boundary value problems (11.2) 1 hr
c. Nonhomogeneous boundary value problems (11.3) 2 hrs

Tests $\underline{2 \mathrm{hrs}}$
36 hrs

Math 257-316 PDE Formula sheet - final exam

Trigonometric and Hyperbolic Function identities

$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \sin \beta \cos \alpha$
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \beta \sin \alpha$.
$\sinh (\alpha \pm \beta)=\sinh \alpha \cosh \beta \pm \sinh \beta \cosh \alpha$
$\cosh (\alpha \pm \beta)=\cosh \alpha \cosh \beta \pm \sinh \beta \sinh \alpha$.

$$
\begin{array}{r}
\sin ^{2} t+\cos ^{2} t=1 \\
\sin ^{2} t=\frac{1}{2}(1-\cos (2 t)) \\
\cosh ^{2} t-\sinh ^{2} t=1 \\
\sinh ^{2} t=\frac{1}{2}(\cosh (2 t)-1)
\end{array}
$$

Basic linear ODE's with real coefficients

	constant coefficients	Euler eq
ODE	$a y^{\prime \prime}+b y^{\prime}+c y=0$	$a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$
indicial eq.	$a r^{2}+b r+c=0$	$a r(r-1)+b r+c=0$
$r_{1} \neq r_{2}$ real	$y=A e^{r_{1} x}+B e^{r_{2} x}$	$y=A x^{r_{1}}+B x^{r_{2}}$
$r_{1}=r_{2}=r$	$y=A e^{r x}+B x e^{r x}$	$y=A x^{r}+B x^{r} \ln \|x\|$
$r=\lambda \pm i \mu$	$e^{\lambda x}[A \cos (\mu x)+B \sin (\mu x)]$	$x^{\lambda}[A \cos (\mu \ln \|x\|)+B \sin (\mu \ln \|x\|)]$

Series solutions for $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0(\star)$ around $x=x_{0}$.
Ordinary point x_{0} : Two linearly independent solutions of the form:

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Regular singular point x_{0} : Rearrange (\star) as:

$$
\left(x-x_{0}\right)^{2} y^{\prime \prime}+\left[\left(x-x_{0}\right) p(x)\right]\left(x-x_{0}\right) y^{\prime}+\left[\left(x-x_{0}\right)^{2} q(x)\right] y=0
$$

If $r_{1}>r_{2}$ are roots of the indicial equation: $\quad r(r-1)+b r+c=0$ where $b=\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) p(x)$ and $c=\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} q(x)$ then a solution of (\star) is

$$
y_{1}(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n+r_{1}} \quad \text { where } a_{0}=1
$$

The second linerly independent solution y_{2} is of the form:
Case 1: If $r_{1}-r_{2}$ is neither 0 nor a positive integer:

$$
y_{2}(x)=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}} \text { where } b_{0}=1
$$

Case 2: If $r_{1}-r_{2}=0$:

$$
y_{2}(x)=y_{1}(x) \ln \left(x-x_{0}\right)+\sum_{n=1}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}} \text { for some } b_{1}, b_{2 \ldots}
$$

Case 3: If $r_{1}-r_{2}$ is a positive integer:

$$
y_{2}(x)=a y_{1}(x) \ln \left(x-x_{0}\right)+\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n+r_{2}} \text { where } b_{0}=1
$$

Fourier, sine and cosine series

Let $f(x)$ be defined in $[-L, L]$ then its Fourier series $F f(x)$ is a $2 L$-periodic function on \mathbf{R} :

$$
F f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right\}
$$

where $a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x$ and $b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x$
Theorem (Pointwise convergence) If $f(x)$ and $f^{\prime}(x)$ are piecewise con-
tinuous, then $F f(x)$ converges for every x to $\frac{1}{2}[f(x-)+f(x+)]$.
Parseval's indentity

$$
\frac{1}{L} \int_{-L}^{L}|f(x)|^{2} d x=\frac{\left|a_{0}\right|^{2}}{2}+\sum_{n=1}^{\infty}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) .
$$

For $f(x)$ defined in $[0, L]$, its cosine and sine series are

$$
\begin{gathered}
C f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right), \quad a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
S f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right), \quad b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{gathered}
$$

Sturm-Liouville Eigenvalue Problems

ODE: $\quad\left[p(x) y^{\prime}\right]^{\prime}-q(x) y+\lambda r(x) y=0, \quad a<x<b$.
BC: $\quad \alpha_{1} y(a)+\alpha_{2} y^{\prime}(a)=0, \quad \beta_{1} y(b)+\beta_{2} y^{\prime}(b)=0$.
Hypothesis: p, p^{\prime}, q, r continuous on $[a, b] . p(x)>0$ and $r(x)>0$ for $x \in[a, b] . \alpha_{1}^{2}+\alpha_{2}^{2}>0 . \beta_{1}^{2}+\beta_{2}^{2}>0$.
Properties (1) The differential operator $L y=\left[p(x) y^{\prime}\right]^{\prime}-q(x) y$ is symmetric in the sense that $(f, L g)=(L f, g)$ for all f, g satisfying the BC, where $(f, g)=$ $\int_{a}^{b} f(x) g(x) d x$. (2) All eigenvalues are real and can be ordered as $\lambda_{1}<\lambda_{2}<$ $\cdots<\lambda_{n}<\cdots$ with $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and each eigenvalue admits a unique (up to a scalar factor) eigenfunction ϕ_{n}.
(3) Orthogonality: $\left(\phi_{m}, r \phi_{n}\right)=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) r(x) d x=0$ if $\lambda_{m} \neq \lambda_{n}$.
(4) Expansion: If $f(x):[a, b] \rightarrow \mathbf{R}$ is square integrable, then

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x), a<x<b, c_{n}=\frac{\int_{a}^{b} f(x) \phi_{n}(x) r(x) d x}{\int_{a}^{b} \phi_{n}^{2}(x) r(x) d x}, n=1,2, \ldots
$$

