Math 423/502, Spring 2008

Final Exam

For simplicity, all rings are commutative with unit.

Problem 1.
Let \mathcal{A} be an abelian category.
(a) Explain what a chain complex in \mathcal{A} is.
(b) Explain what the homology of a chain complex is.
(c) Explain what a homomorphism of chain complexes is.
(d) Explain what a chain homotopy is.
(e) Prove that chain homotopic homomorphisms induce identical homomorphisms on homology.

Problem 2.
Let R be a ring and M, N two R-modules. Explain how the R-modules $\text{Ext}_R^i(M, N)$ are constructed.

Problem 3.
Let R be a ring.
(a) Explain what a non zero divisor in R is.
(b) Define the term projective dimension of an R-module M.
(c) Suppose x is a non zero divisor in R. Prove that R/xR has projective dimension 1.
(d) Give an example of a ring R and a module M, such that the projective dimension of M is infinite.

Problem 4.
Consider a ring R.
(a) Define the term global dimension of R.
(b) Explain why the global dimension of \mathbb{Z} is 1.
(c) Give an example of a ring with infinitie global dimension.

Problem 5.
Suppose that $f : X \to Y$ is a ‘fibration’ of topological spaces, with fibre F. Suppose further, that sufficient hypotheses are satisfied, such that the Leray spectral sequence of f reads

$$E_2^{p,q} = H^p(Y, \mathbb{Q}) \otimes H^q(F, \mathbb{Q}) \Rightarrow H^{p+q}(X, \mathbb{Q})$$

(a) Suppose that $H^i(Y, \mathbb{Q}) = \mathbb{Q}$, for $i = 0, 2, 4$, and 0 otherwise. Suppose that $H^i(F, \mathbb{Q}) = \mathbb{Q}$, for $i = 0, 3$, and 0 otherwise. Display graphically the E_2-term of this Leray spectral sequence in this case.
(b) What can you conclude about the cohomology of X, under these assumptions?